Highly efficient magnetically separable TiO2-graphene oxide supported SrFe12O19 for direct sunlight-driven photoactivity

Aziz, A. and Yau, Y.H. and Puma, G.L. and Fischer, C. and Ibrahim, S. and Pichiah, S. (2014) Highly efficient magnetically separable TiO2-graphene oxide supported SrFe12O19 for direct sunlight-driven photoactivity. Chemical Engineering Journal, 235. pp. 264-274. ISSN 1385-8947, DOI https://doi.org/10.1016/j.cej.2013.09.043.

PDF (Highly efficient magnetically separable TiO2-graphene oxide supported SrFe12O19 for direct sunlight-driven photoactivity)
Highly_efficient_magnetically_separable_TiO2-graphene_oxide_supported_SrFe12O19_for_direct_sunlight-driven_photoactivity.pdf - Other

Download (226kB)
Official URL: http://www.scopus.com/inward/record.url?eid=2-s2.0...


A highly solar photoactive, magnetically separable, TiO2-graphene oxide supported SrFe12O19 (TiO2/GO/SrFe12O19) photocatalyst was synthesised via the solid reaction of silica (SiO2)-coated SrFe12O19 with TiO2 and GO, which were produced by a hydrothermal reaction and Hummer's method, respectively. Several aspects of the material chemistry of the prepared photocatalyst were explored: its crystallite phase, particle size, surface morphology, inorganic elemental composition, adsorption-desorption hysteresis, BET surface area, organic functional group, chemical state of surface, magnetic hysteresis, coercivity (Hci), saturation magnetisation (Ms), remanence (Mr), thermal property and visible light absorption analysis. The synthesised TiO2/GO/SrFe12O19 exhibited greater ferromagnetic properties (Hci: 2103 Oe; Ms: 3.406E-3emug-1; Mr: 1.642E-3emug-1), which further enhanced its re-usability. The incorporation of GO and SrFe12O19 resulted in a drastic reduction in the bandgap energy (1.80eV). Moreover, this incorporation contributed for the higher visible light absorption. The photoactivity of TiO2/GO/SrFe12O19 was evaluated under direct sunlight for the degradation of 2,4-dichlorophenol (2,4-DCP). The degradation over a period of 5h suggested excellent photoactivity. © 2013 Elsevier B.V.

Item Type: Article
Additional Information: Export Date: 13 February 2014 Source: Scopus CODEN: CMEJA Language of Original Document: English Correspondence Address: Pichiah, S.; Environmental Engineering Laboratory, Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; email: saravananpichiah@um.edu.my References: Lee, J.S., You, K.H., Park, C.B., Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene (2012) Adv. Mater., 24, pp. 1084-1088; Zhang, D., Yang, X., Zhu, J., Zhang, Y., Zhang, P., Li, G., Graphite-like carbon deposited anatase TiO2 single crystals as efficient visible-light photocatalysts (2011) J. Sol-Gel. Sci. Technol., 58, pp. 594-601; Zhao, L., Chen, X., Wang, X., Zhang, Y., Wei, W., Sun, Y., Antonietti, M., Titirici, M.-M., One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis (2010) Adv. Mater., 22, pp. 3317-3321; Liu, J., Bai, H., Wang, Y., Liu, Z., Zhang, X., Sun, D.D., Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications (2010) Adv. Funct. Mater., 20, pp. 4175-4181; Kim, H.N., Kim, T.W., Kim, I.Y., Hwang, S.-J., Cocatalyst-free photocatalysts for efficient visible-light-induced H2 production: porous assemblies of CdS quantum dots and layered titanate nanosheets (2011) Adv. Funct. Mater., 21, pp. 3111-3118; Du, J., Lai, X., Yang, N., Zhai, J., Kisailus, D., Su, F., Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities (2010) ACS Nano, 5, pp. 590-596; Li, G., Gray, K.A., The solid-solid interface: explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials (2007) Chem. Phys., 339, pp. 173-187; Liu, G., Zhao, Y., Sun, C., Li, F., Lu, G.Q., Cheng, H.-M., Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2 (2008) Angew. Chem. Int. Ed., 47, pp. 4516-4520; Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Tour, J.M., Improved synthesis of graphene oxide (2010) ACS Nano, 4, pp. 4806-4814; Wöbkenberg, P.H., Eda, G., Leem, D.-S., de Mello, J.C., Bradley, D.D.C., Chhowalla, M., Anthopoulos, T.D., Reduced graphene oxide electrodes for large area organic electronics (2011) Adv. Mater., 23, pp. 1558-1562; Wang, L., Pu, K.-Y., Li, J., Qi, X., Li, H., Zhang, H., Fan, C., Liu, B., A graphene-conjugated oligomer hybrid probe for light-up sensing of lectin and E. coli (2011) Adv. Mater., 23, pp. 4386-4391; Manga, K.K., Wang, S., Jaiswal, M., Bao, Q., Loh, K.P., High-gain graphene-titanium oxide photoconductor made from inkjet printable ionic solution (2010) Adv. Mater., 22, pp. 5265-5270; Zhang, H., Li, X., Li, Y., Wang, Y., Li, J., P25-graphene composite as a high performance photocatalyst (2009) ACS Nano, 4, pp. 380-386; Ng, Y.H., Lightcap, I.V., Goodwin, K., Matsumura, M., Kamat, P.V., To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? (2010) J. Phys. Chem. Lett., 1, pp. 2222-2227; Gao, Y., Pu, X., Zhang, D., Ding, G., Shao, X., Ma, J., Combustion synthesis of graphene oxide-TiO2 hybrid materials for photodegradation of methyl orange (2012) Carbon, 50, pp. 4093-4101; Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S., The chemistry of graphene oxide (2010) Chem. Soc. Rev., 39, pp. 228-240; Fu, W., Yang, H., Chang, L., Hari, B., Li, M., Zou, G., Anatase TiO2 nanolayer coating on strontium ferrite nanoparticles for magnetic photocatalyst (2006) Colloid. Surf. A: Phys. Eng. Aspects, 289, pp. 47-52; Fu, W., Yang, H., Li, M., Chang, L., Yu, Q., Xu, J., Zou, G., Preparation and photocatalytic characteristics of core-shell structure TiO2/BaFe12O19 nanoparticles (2006) Mater. Lett., 60, pp. 2723-2727; Fu, W., Yang, H., Li, M., Li, M., Yang, N., Zou, G., Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst (2005) Mater. Lett., 59, pp. 3530-3534; Polshettiwar, V., Varma, R.S., Green chemistry by nano-catalysis (2010) Green Chem., 12, pp. 743-754; Shylesh, S., Schünemann, V., Thiel, W.R., Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis (2010) Angew. Chem. Int. Ed., 49, pp. 3428-3459; Lu, A.-H., Salabas, E.L., Schüth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application (2007) Angew. Chem. Int. Ed., 46, pp. 1222-1244; Xuan, S., Jiang, W., Gong, X., Hu, Y., Chen, Z., Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity (2009) J. Phys. Chem. C, 113, pp. 553-558; Beydoun, D., Amal, R., Low, G., McEvoy, S., Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide (2002) J. Mol. Catal. A: Chem., 180, pp. 193-200; Iv, W.L.K., Drwiega, J., Mazyck, D.W., Lee, S.-W., Sigmund, W., Wu, C.-Y., Chadik, P., Magnetically agitated photocatalytic reactor for photocatalytic oxidation of aqueous phase organic pollutants (2005) Environ. Sci. Technol., 39, pp. 8052-8056; Shchukin, D.G., Kulak, A.I., Sviridov, D.V., Magnetic photocatalysts of the core-shell type (2002) Photochem. Photobiol. Sci., 1, pp. 742-744; Shchukin, D.G., Ustinovich, E.A., Sviridov, D.V., Kulak, A.I., Titanium and iron oxide-based magnetic photocatalysts for oxidation of organic compounds and sulfur dioxide (2004) High Energ. Chem., 38, pp. 167-173; Chen, F., Zhao, J., Preparation and photocatalytic properties of a novel kind of loaded photocatalyst of TiO2/SiO2/-Fe2O3 (1999) Catal. Lett., 58, pp. 245-247; Beydoun, D., Amal, R., Scott, J., Low, G., McEvoy, S., Studies on the mineralization and separation efficiencies of a magnetic photocatalyst (2001) Chem. Eng. Technol., 24, pp. 745-748; Hummers, W.S., Offemen, R.E., Preparation of graphitic oxide (1958) J. Am. Chem. Soc., 80, p. 1339; Aziz, A.A., Cheng, C.K., Ibrahim, S., Matheswaran, M., Saravanan, P., Visible light improved, photocatalytic activity of magnetically separable titania nanocomposite (2012) Chem. Eng. J., 183, pp. 349-356; Aziz, A.A., Yong, K.S., Ibrahim, S., Pichiah, S., Enhanced magnetic separation and photocatalytic activity of nitrogen doped titania photocatalyst supported on strontium ferrite (2012) J. Hazard. Mater., pp. 143-150; Pettersson, H., Gruszecki, T., Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods (2001) Sol. Energy Mater. Solar Cells, 70, pp. 203-212; Hurum, D.C., Gray, K.A., Rajh, T., Thurnauer, M.C., Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms (2005) J. Phys. Chem. B, 109, pp. 977-980; Karthikeyan, K., Murugan, V., Kyusik, Y.K.S.-J., The chemical and structural analysis of graphene oxide with different degrees of oxidation (2013) Carbon, 53, pp. 38-49; Chao, C., Weimin, C., Mingce, L., Baoxue, Z., Yahui, W., Deyong, W., Yujie, F., Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction (2010) ACS Nano, 4, pp. 6425-6432; Sharma, S.D., Singh, D., Saini, K.K., Kant, C., Sharma, V., Jain, S.C., Sharma, C.P., Sol-gel-derived super-hydrophilic nickel doped TiO2 film as active photo-catalyst (2006) Appl. Catal. A: Gen., 314, pp. 40-46; Ao, Y., Xu, J., Zhang, S., Fu, D., Synthesis of a magnetically separable composite photocatalyst with high photocatalytic activity under sunlight (2009) J. Phys. Chem. Sol., 70, pp. 1042-1047; Kim, F., Cote, L.J., Huang, J., Graphene oxide: surface activity and two-dimensional assembly (2010) Adv. Mater., 22, pp. 1954-1958; Puma, G.L., Bono, A., Krishnaiah, D., Collin, J.G., Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper (2008) J. Hazad. Mater., 157, pp. 209-219; Minero, C., Catozzo, F., Pelizzetti, E., Role of adsorption in photocatalysed reactions of organic molecules in aqueous TiO2 suspensions (1992) Langmuir, 8, pp. 481-486; Nguyen-Phan, T.-D., Pham, V.H., Shin, E.W., Pham, H.-D., Kim, S., Chung, J.S., Kim, E.J., Hur, S.H., The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites (2011) Chem. Eng. J., 170, pp. 226-232; Lightcap, I.V., Kosel, T.H., Kamat, P.V., Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide (2010) Nano Lett., 10, pp. 577-583
Uncontrolled Keywords: 2,4-DCP degradation, Magnetic separation, Sunlight, TiO2, TiO2/GO/SrFe12O19, 2 ,4 dichlorophenol(2 ,4 dcp), 2 ,4-DCP, Ferromagnetic properties, Magnetically separable, Organic functional groups, TiO, Visible light absorption, Chemical analysis, Functional groups, Graphene, Titanium dioxide.
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 19 Mar 2014 00:56
Last Modified: 03 Jul 2017 08:13
URI: http://eprints.um.edu.my/id/eprint/9425

Actions (login required)

View Item View Item