Nanonickel catalyst reinforced with silicate for methane decomposition to produce hydrogen and nanocarbon: Synthesis by co-precipitation cum modified Stober method

Ashik, U.P.M. and Daud, W.M.A.W. (2015) Nanonickel catalyst reinforced with silicate for methane decomposition to produce hydrogen and nanocarbon: Synthesis by co-precipitation cum modified Stober method. RSC Advances, 5 (58). pp. 46735-46748. ISSN 2046-2069, DOI

PDF (Nanonickel catalyst reinforced with silicate for methane decomposition to produce hydrogen and nanocarbon: synthesis by co-precipitation cum modified Stober method)
Nanonickel_catalyst_reinforced_with_silicate_for_methane_decomposition_to_produce_hydrogen_.pdf - Published Version

Download (2MB)
Official URL:


Co-precipitation cum modified Stober method is a continuous process avoiding application of higher temperature treatment before supporting nanometal with SiO2, irrespective of pre-preparation methods. We have conducted the co-precipitation process without undertaking calcination under air in order to avoid even a partial particle agglomeration and hence maintained average particle size similar to 30 nm after enforcing with SiO2. This is the first report adopting such an unceasing preparation for preparing metal/silicate nanostructures. Furthermore, n-Ni/SiO2 nanostructured catalysts were used for thermocatalytic decomposition of methane to produce hydrogen and carbon nanotubes. The catalyst was found to be very stable and the methane transformation activity proceeded for 300 min on methane stream with little deactivation in the temperature range 475-600 degrees C. We have also successfully extended the catalyst preparation method for Fe and Co metals and conducted preliminary catalyst examinations.

Item Type: Article
Funders: University of Malaya, Malaysia UM.C/HIR/MOHE/ENG/11
Additional Information: ISI Document Delivery No.: CJ7TP Times Cited: 0 Cited Reference Count: 62 Cited References: Abbas HF, 2010, APPL CATAL A-GEN, V388, P232, DOI 10.1016/j.apcata.2010.08.057 Aiello R, 2000, APPL CATAL A-GEN, V192, P227, DOI 10.1016/S0926-860X(99)00345-2 Al-Hassani AA, 2014, INT J HYDROGEN ENERG, V39, P7004, DOI 10.1016/j.ijhydene.2014.02.075 Ashik UPM, 2015, RENEW SUST ENERG REV, V44, P221, DOI 10.1016/j.rser.2014.12.025 BAIRD T, 1974, CARBON, V12, P591, DOI 10.1016/0008-6223(74)90060-8 BAKER RTK, 1972, J CATAL, V26, P51, DOI 10.1016/0021-9517(72)90032-2 Balat M, 2009, INT J HYDROGEN ENERG, V34, P3589, DOI 10.1016/j.ijhydene.2009.02.067 Breen ML, 2001, LANGMUIR, V17, P903, DOI 10.1021/la0011578 Brentner LB, 2010, ENVIRON SCI TECHNOL, V44, P2243, DOI 10.1021/es9030613 Chai SP, 2011, J NAT GAS CHEM, V20, P84, DOI 10.1016/S1003-9953(10)60151-X Choudhary TV, 2001, J CATAL, V199, P9, DOI 10.1006/jcat.2000.3142 Cunha AF, 2008, APPL CATAL A-GEN, V348, P103, DOI 10.1016/j.apcata.2008.06.028 Danek M, 1996, CHEM MATER, V8, P173, DOI 10.1021/cm9503137 Deng Y, 2008, J AM CHEM SOC, V130, P28, DOI 10.1021/ja0777584 Ebiad MA, 2012, RSC ADV, V2, P8145, DOI 10.1039/c2ra20258a Elsalamony RA, 2013, RSC ADV, V3, P23791, DOI 10.1039/c3ra43560a Figueiredo JL, 2010, INT J HYDROGEN ENERG, V35, P9795, DOI 10.1016/j.ijhydene.2009.12.071 Gosselink JW, 2002, INT J HYDROGEN ENERG, V27, P1125, DOI 10.1016/S0360-3199(02)00092-7 Guevara JC, 2010, INT J HYDROGEN ENERG, V35, P3509, DOI 10.1016/j.ijhydene.2010.01.068 Jana P, 2012, INT J HYDROGEN ENERG, V37, P7034, DOI 10.1016/j.ijhydene.2011.11.067 Joo SH, 2009, NAT MATER, V8, P126, DOI 10.1038/nmat2329, 10.1038/NMAT2329 KIM MS, 1991, J CATAL, V131, P60, DOI 10.1016/0021-9517(91)90323-V Li L, 2012, CATAL COMMUN, V26, P72, DOI 10.1016/j.catcom.2012.05.005 Li L, 2012, J CATAL, V288, P54, DOI 10.1016/j.jcat.2012.01.004 Li XK, 2005, J CATAL, V236, P181, DOI 10.1016/j.jcat.2005.09.030 Li YD, 2000, ENERG FUEL, V14, P1188, DOI 10.1021/ef0000781 Li YD, 1998, J CATAL, V178, P76, DOI 10.1006/jcat.1998.2119 Li YX, 2010, CATAL COMMUN, V11, P368, DOI 10.1016/j.catcom.2009.11.003 Liu F, 2015, RSC ADV, V5, P16837, DOI 10.1039/c4ra14131h Uddin MN, 2015, ENERG CONVERS MANAGE, V90, P218, DOI 10.1016/j.enconman.2014.10.060 Nuernberg GDB, 2012, J POWER SOURCES, V208, P409, DOI 10.1016/j.jpowsour.2012.02.037 Otsuka K, 2001, J CATAL, V200, P4, DOI 10.1006/jcat.2001.3179 Otsuka K, 2000, APPL CATAL A-GEN, V190, P261, DOI 10.1016/S0926-860X(99)00324-5 Park JC, 2010, J MATER CHEM, V20, P1239, DOI 10.1039/b918446e Reiss P, 2002, NANO LETT, V2, P781, DOI 10.1021/nl025596y ROBERTSON SD, 1975, J CATAL, V37, P424, DOI 10.1016/0021-9517(75)90179-7 Romero A, 2008, MICROPOR MESOPOR MAT, V110, P318, DOI 10.1016/j.micromeso.2007.06.031 Saraswat SK, 2011, INT J HYDROGEN ENERG, V36, P13352, DOI 10.1016/j.ijhydene.2011.07.102 Serp P, 2003, APPL CATAL A-GEN, V253, P337, DOI 10.1016/S0926-860X(03)00549-0 Shinde VM, 2014, RSC ADV, V4, P4817, DOI 10.1039/c3ra45961f Sinha AK, 2000, CHEM PHYS LETT, V332, P455, DOI 10.1016/S0009-2614(00)01315-4 Skumryev V, 2003, NATURE, V423, P850, DOI 10.1038/nature01687 Sorensen RZ, 2005, CATAL COMMUN, V6, P229, DOI 10.1016/j.catcom.2005.01.005 Stjerndahl M, 2008, LANGMUIR, V24, P3532, DOI 10.1021/la7035604 STOBER W, 1968, J COLLOID INTERF SCI, V26, P62, DOI 10.1016/0021-9797(68)90272-5 Takenaka S, 2001, APPL CATAL A-GEN, V217, P101, DOI 10.1016/S0926-860X(01)00593-2 Takenaka S, 2003, J CATAL, V217, P79, DOI 10.1016/S0021-9517(02)00185-9 TESNER PA, 1970, CARBON, V8, P435, DOI 10.1016/0008-6223(70)90003-5 Tsoncheva T, 2007, CATAL COMMUN, V8, P1573, DOI 10.1016/j.catcom.2007.01.012 Uddin MN, 2014, RSC ADV, V4, P10467, DOI 10.1039/c3ra43972k Velikov KP, 2002, APPL PHYS LETT, V80, P49, DOI 10.1063/1.1431698 Wang SB, 2008, ENVIRON SCI TECHNOL, V42, P7055, DOI 10.1021/es801312m Wang WH, 2012, INT J HYDROGEN ENERG, V37, P9058, DOI 10.1016/j.ijhydene.2012.03.003 Westermann P, 2007, INT J HYDROGEN ENERG, V32, P4135, DOI 10.1016/j.ijhydene.2007.06.018 Wu J, 2008, ELECTROCHIM ACTA, V53, P8341, DOI 10.1016/j.electacta.2008.06.051 Xie RY, 2011, CATAL COMMUN, V12, P380, DOI 10.1016/j.catcom.2010.10.010 Yao LH, 2011, CATAL TODAY, V164, P112, DOI 10.1016/j.cattod.2010.10.056 Zapata B, 2010, INT J HYDROGEN ENERG, V35, P12091, DOI 10.1016/j.ijhydene.2009.09.072 Zeng H, 2004, NANO LETT, V4, P187, DOI 10.1021/nl035004r Zhang TJ, 1998, APPL CATAL A-GEN, V167, P161, DOI 10.1016/S0926-860X(97)00143-9 Zhang WM, 2008, ADV MATER, V20, P1160, DOI 10.1002/adma.200701364 Zou J, 2014, RSC ADV, V4, P9693, DOI 10.1039/c3ra47043a Ashik, U. P. M. Daud, W. M. A. Wan Engineering, Faculty /I-7935-2015 Engineering, Faculty /0000-0002-4848-7052 University of Malaya, Malaysia UM.C/HIR/MOHE/ENG/11 The authors gratefully acknowledge financial support from the postgraduate Research Fund (UM.C/HIR/MOHE/ENG/11), University of Malaya, Malaysia. 0 ROYAL SOC CHEMISTRY CAMBRIDGE RSC ADV
Uncontrolled Keywords: Core-shell nanocatalysts, supported-ni catalysts, raney-type catalysts, cox-free hydrogen, carbon nanotubes, ammonia decomposition, thermocatalytic decomposition, fe3o4-at-sio2 core, iron nanoparticles, photonic crystals,
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TP Chemical technology
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 17 Mar 2016 01:27
Last Modified: 08 Nov 2017 08:49

Actions (login required)

View Item View Item