Modeling of a polyimide diaphragm for an optical pulse pressure sensor

Hasikin, K. and Soin, N. and Ibrahim, F. (2009) Modeling of a polyimide diaphragm for an optical pulse pressure sensor. In: International Conference for Technical Postgraduates 2009, TECHPOS 2009, 2009, Kuala Lumpur.

[img]
Preview
PDF (Modeling of a polyimide diaphragm for an optical pulse pressure sensor)
Modeling_of_a_polyimide_diaphragm_for_an_optical_pulse_pressure_sensor.pdf - Published Version

Download (575kB)
Official URL: http://www.scopus.com/inward/record.url?eid=2-s2.0...

Abstract

This paper presents the modeling of a polyimide diaphragm for an optical pulse pressure sensor. Polyimide is a type of polymer materials that possessed low linear coefficient of thermal expansion and has good thermal stability. The polyimide diaphragm has been designed and its performance is analyzed in terms of diaphragm deflection, diaphragm pressure sensitivity and diaphragm resonance frequency. Two design parameters namely diaphragm radius and diaphragm thickness are varied to study the diaphragm performance. It can be concluded that the modeled micro-diaphragm with a diaphragm radius of 90μm and diaphragm thickness of 4μm respectively has satisfied the maximum allowable deflection and operated in optimum frequency response.

Item Type: Conference or Workshop Item (Paper)
Funders: UNSPECIFIED
Additional Information: Conference code: 79876 Cited By (since 1996):1 Export Date: 29 January 2014 Source: Scopus Art. No.: 5412059 doi: 10.1109/TECHPOS.2009.5412059 Language of Original Document: English Correspondence Address: Hasikin, K.; Dept. of Biomedical Engineering, University of Malaya Lembah Pantai, 50603 Kuala Lumpur, Malaysia References: Cibula, E., Donlagic, D., Stropnik, C., Miniature fiber optic pressure sensor for medical applications (2002) Applied Optics, 44 (14), pp. 2736-2744; Hill, G.C., Melamud, R., Declercq, F.E., Davenport, A.A., Chan, I.H., Hartwell, P.G., Pruitt, B.L., SU-8 MEMS Fabry-Perot pressure sensor (2007) Sensors and Actuators, A: Physical, 138 (1), pp. 52-62. , DOI 10.1016/j.sna.2007.04.047, PII S0924424707003329; Melamud, R., Davenport, A.A., Hill, G.C., Chan, I.H., Declercq, F., Hartwell, P.G., Pruitt, B.L., Development of an SU-8 fabry-perot blood pressure sensor (2005) 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. , Miami USA, 30 Jan - 3 Feb; Nesson, S., (2007) Miniature Fiber Optic Pressure Sensors for Intervertebral Disc Pressure Measurements in Rodents, , M.Sc. USA: University of Maryland, College Park; Madou, M.J., (2002) Fundamentals of Microfabrication the Science of Miniaturization, , 2ndEd. CRC Press; Tohyama, O., Kohashi, M., Sugihara, M., Itoh, H., A fiber-optic pressure microsensor for biomedical applications (1998) Sensors and Actuators A, 66, pp. 150-154; Totsu, K., Haga, Y., Esashi, M., Ultra-miniature fiber-optic pressure sensor using white light interferometry (2005) Journal of Micromechanics and Microengineering, 15 (1), pp. 71-75. , DOI 10.1088/0960-1317/15/1/011; Marco, S., Samitier, J., Ruiz, O., Morante, J.R., Esteve, R., High performance piezoresistive pressure sensors for biomedical applications using very thin structured membranes (1996) Meas. Sci. Technol., 7, pp. 1195-1203; Pramanik, C., Saha, H., Gangopadhyay, U., Design optimization of a high performance silicon MEMS piezoresistive pressure sensor for biomedical applications (2006) Journal of Micromechanics and Microengineering, 16 (10), pp. 2060-2066. , DOI 10.1088/0960-1317/16/10/019, PII S096013170620531X, 019; Park, J.B., Bronzino, J.D., (2003) Biomaterials Principles and Applications, , USA: CRC Press; Cibula, E., Donlagic, D., Stropnik, C., Miniature fiber optic pressure sensor for medical applications (2002) Applied Optics, 44 (14), pp. 2736-2744; He, G., Cuomo, F.W., Displacement response, detection limit and dynamic range of fiber optic level sensors (1991) J. Lightwave Technol., 9 (11), pp. 1618-1625; Shin, K.H., Moon, C.Y., Lee, T.H., Lim, C.H., Kim, Y.J., Implantable flexible wireless pressure sensor module (2004) Sensors and Actuators A: Physical, 123, pp. 30-35; Chiang, C.-C., Lin, C.-C.K., Ju, M.-S., An implantable capacitive pressure sensor for biomedical applications (2007) Sensors and Actuators A, 134, pp. 382-388; Sun G, Y., Georgiou, F.G., Niver, E., Noe, K., Chin, K., Center embossed design guidelines and fabry-perot diaphragm fiber optic sensor (2008) Microelectronic Journal, 39, pp. 711-716; Tayag, T.J., Hoon, K.S., Marchetti, J., Jafri, I.H., Optical fiber interferometer for measuring the in situ deflection characteristics of microelectromechanical structures (2003) Opt. Eng., 42 (1), pp. 105-111; Pelletier, N., Beche, B., Tahani, N., Camberlein, L., Gaviot, E., Goullet, A., Landesman, J.P., Zyss, J., Integrated mach-zehnder interferometer on su-8 polymer for designing pressure sensors (2005) Proceedings of IEEE Sensors, , 30 Oct - 3 Nov; Yu, H., Zhao, L., An efficient denoising procedure for magnetic resonance imaging (2008) The 2nd International Conference on Bioinformatics and Biomedical Engineering., , Shanghai, China. 16-18 May; Correia, J.H., Bartek, M., Wolffenbuttel, R.F., Load-deflection of a Low Stress SiN-Membrane/Si Frame Composite Diaphragm (1998) Technical Proceedings of the 1998 International Conference on Modeling and Simulation of Microsystem., , USA; Shirazee, N.A., Basak, A., Nakata, T., Takahashi, N., Analysis of permanent magnet lifting devices using finite elements (1997) IEEE Transactions on Magnetics, 33 (2 PART 2), pp. 2211-2214; Goldberg, R.L., Jurgens, M.J., Mills, D.M., Henriques, C.S., Vaughan, D., Smith, S.W., Modeling of Piezoelectric Multilayer Ceramics using Finite Element Analysis (1997) IEEE Transactions on Ultrasonics, Ferroelectronics and Frequency Control, 44 (6), pp. 1204-1214; Xu, J., (2005) High Temperature High Bandwidth Fiber Optic Pressure Sensors, , Ph.D. Blacksburg, Virginia: Virginia Polytechnic and State University; Deng, J., (2004) Development of Novel Optical Fiber Interferometric Sensors with High Sensitivity for Acoustic Emission Detection., , Dissertation submitted to Virginia Polytechnic Institute; Madssen, E., Haere, P., Wiseth, R., Radial artery diameter and vasodilatory properties after transradial coronary angiography (2006) Ann Thorac Surg., 82, pp. 1698-1703; Osika, W., Gronros, D.F.J., Lundstam, U., Myredal M, A., Volkmann, J.R., Gustavsson L M, T., Friberg, G.P., Increasing peripheral artery intima thickness from childhood to seniority (2007) Journal of the American Heart Association, 27 (3), pp. 671-676; Giovanni, M.D., (1982) Flat and Corrugated Diaphragm Design Handbook Marcel Dekker, Inc.; Le, H.P., Shah, K., Singh, J., Zayegh, A., Design and implementation of an optimised wireless pressure sensor for biomedical application (2006) Analog Integrated Circuits and Signal Processing, 48 (1), pp. 21-31. , DOI 10.1007/s10470-006-8118-5; Wang, X., Li, B., Russo, O.L., Roman, H.T., Chin, K.K., Farmer, K.R., Diaphragm design guidelines and an optical pressure sensor based on MEMS technique (2006) Microelectronics Journal, 37 (1), pp. 50-56. , DOI 10.1016/j.mejo.2005.06.015, PII S0026269205002521; Soin, N., Majlis, B.Y., An analytical study on diaphragm behavior for micro-machined capacitive pressure sensor (2002) International Conference on Semiconductor Electronics, , Kuala Lumpur, Malaysia
Uncontrolled Keywords: Design parameters, Diaphragm deflection, Diaphragm pressure, Linear coefficient of thermal expansion, Maximum allowable deflection, Optical pulse, Optimum frequency, Polymer materials, Resonance frequencies, Thermal stability, Frequency response, Light pulse generators, Organic polymers, Polyimides, Pressure sensors, Pressure transducers, Resonance, Thermal expansion, Thermogravimetric analysis, Diaphragms
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 26 Mar 2014 02:26
Last Modified: 01 Nov 2017 04:04
URI: http://eprints.um.edu.my/id/eprint/9307

Actions (login required)

View Item View Item