The effect of contact angles and capillary dimensions on the burst frequency of super hydrophilic and hydrophilic centrifugal microfluidic platforms, a CFD study

Kazemzadeh, A. and Ganesan, P. and Ibrahim, Fatimah and He, S. and Madou, M.J. (2013) The effect of contact angles and capillary dimensions on the burst frequency of super hydrophilic and hydrophilic centrifugal microfluidic platforms, a CFD study. PLoS ONE, 8 (9). pp. 1-12. ISSN 1932-6203, DOI https://doi.org/10.1371/journal.pone.0073002.

[img]
Preview
PDF (The Effect of Contact Angles and Capillary Dimensions on the Burst Frequency of Super Hydrophilic and Hydrophilic Centrifugal Microfluidic Platforms, a CFD Study)
The_Effect_of_Contact_Angles_and_Capillary_Dimensions_on_the_Burst_Frequency_of_Super_Hydrophilic_and_Hydrophilic_Centrifugal_Microfluidic_Platforms,_a_CFD_Study.pdf - Published Version

Download (1MB)
Official URL: https://doi.org/10.1371/journal.pone.0073002

Abstract

This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms. © 2013 Kazemzadeh et al.

Item Type: Article
Funders: UNSPECIFIED
Additional Information: Export Date: 29 January 2014 Source: Scopus Art. No.: e73002 CODEN: POLNC Language of Original Document: English Correspondence Address: Ganesan, P.; Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, Malaysia; email: pooganesan@um.edu.my Funding Details: National Research Foundation Funding Details: NIH, National Institutes of Health References: Zoval, J.V., Madou, M.J., Centrifuge-based fluidic platforms (2004) Proceedings of the IEEE, 92, pp. 140-153; Madou, M.J., Lee, L.J., Daunert, S., Lai, S., Shih, C.H., Design and fabrication of CD-like microfluidic platforms for diagnostics: microfluidic functions (2001) Biomedical Microdevices, 3, pp. 245-254; Lee, L.J., Madou, M.J., Koelling, K.W., Daunert, S., Lai, S., Design and fabrication of CD-Like microfluidic platforms for diagnostics: polymer-based microfabrication (2001) Biomedical Microdevices, 3, pp. 339-351; Madou, M., Zoval, J., Jia, G., Kido, H., Kim, J., Lab on a CD (2006) Annual Review of Biomedical Engineering, 8, pp. 601-628; Reyes, D., Iossifidis, D., Auroux, P.A., Manz, A., Micro total analysis systems 1. Introduction, theory, and technology (2002) Analaytical Chemistry, pp. 2623-2636; Auroux, P.A., Iossifidis, D., Reyes, D.R., Manz, A., Micro total analysis systems. 2. analytical standard operations and applications (2002) Analytical Chemistry, 74, pp. 2637-2652; Oh, K.W., Ahn, C.H., A review of microvalves (2006) Journal of Micromechanics and Microengineering, 16, pp. R13; Cho, H., Kim, H.Y., Kang, J.Y., Kim, T.S., How the capillary burst microvalve works (2007) Journal of Colloid and Interface Science, 306, pp. 379-385; Duffy, D.C., Gillis, H.L., Lin, J., Sheppard, N.F., Kellogg, G.J., Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays (1999) Analytical Chemistry, 71, pp. 4669-4678; Feng, Y., Zhou, Z., Ye, X., Xiong, J., Passive valves based on hydrophobic microfluidics (2003) Sensors and Actuators A: Physical, 108, pp. 138-143; Zeng, J., Banerjee, D., Deshpande, M., Gilbert, J., Duffy, C.D., Design analysis of capillary burst valves in centrifugal microfluidics (2000) Amsterdam, pp. 579-582. , Kluwer Academic Publisher; Fang, C., Hidrovo, C., Wang, F.M., Eaton, J., Goodson, K., 3-D numerical simulation of contact angle hysteresis for microscale two phase flow (2008) International Journal of Multiphase Flow, 34, pp. 690-705; Jeon, N.L., Chiu, D.T., Wargo, C.J., Wu, H., Choi, I.S., Microfluidics section: design and fabrication of Integrated passive valves and pumps for flexible polymer 3-dimensional microfluidic systems (2002) Biomedical Microdevices, 4, pp. 117-121; Nguyen, N.T., Truong, T.Q., Wong, K.K., Ho, S.S., Low, C.L.N., Micro check valves for integration into polymeric microfluidic devices (2004) Journal of Micromechanics and Microengineering, 14, p. 69; Ducrée, J., Haeberle, S., Lutz, S., Pausch, S., von Stetten, F., The centrifugal microfluidic Bio-Disk platform (2007) Journal of Micromechanics and Microengineering, 17, pp. S103; Yang, E.H., Han, S.W., Yang, S.S., Fabrication and testing of a pair of passive bivalvular microvalves composed of p+ silicon diaphragms (1996) Sensors and Actuators A: Physical, 57, pp. 75-78; Sim, W.Y., Yoon, H.J., Jeong, O.C., Yang, S.S., A phase-change type micropump with aluminum flap valves (2003) Journal of Micromechanics and Microengineering, 13, p. 286; Li, B., Chen, Q., Lee, D.G., Woolman, J., Carman, G.P., Development of large flow rate, robust, passive micro check valves for compact piezoelectrically actuated pumps (2005) Sensors and Actuators A: Physical, 117, pp. 325-330; Santra, S., Holloway, P., Batich, C.D., Fabrication and testing of a magnetically actuated micropump (2002) Sensors and Actuators B: Chemical, 87, pp. 358-364; Carrozza, M.C., Croce, N., Magnani, B., Dario, P., A piezoelectric-driven stereolithography-fabricated micropump (1995) Journal of Micromechanics and Microengineering, 5, p. 177; Yamahata, C., Lacharme, F., Burri, Y., Gijs, M.A.M., A ball valve micropump in glass fabricated by powder blasting (2005) Sensors and Actuators B: Chemical, 110, pp. 1-7; Man, P.F., Mastrangelo, C.H., Burns, M.A., Burke, D.T., (1998) Microfabricated capillarity-driven stop valve and sample injector, pp. 45-50. , 25-29 Jan 1998; Leu, T.S., Chang, P.Y., Pressure barrier of capillary stop valves in micro sample separators (2004) Sensors and Actuators A: Physical, 115, pp. 508-515; Andersson, H., van der Wijngaart, W., Griss, P., Niklaus, F., Stemme, G., Hydrophobic valves of plasma deposited octafluorocyclobutane in DRIE channels (2001) Sensors and Actuators B: Chemical, 75, pp. 136-141; Chen, J., Huang, P.C., Lin, M.G., Analysis and experiment of capillary valves for microfluidics on a rotating disk (2008) Microfluidics and Nanofluidics, 4, pp. 427-437; He, H., Yuan, Y., Wang, W., Chiou, N.R., Epstein, A.J., Design and testing of a microfluidic biochip for cytokine enzyme-linked immunosorbent assay (2009) Biomicrofluidics, 3. , no. 022401; Zeng, J., Deshpande, M., Greiner, B.K., Gilbert, R.J., (2000) Fluidic capacitance model of capillary-driven stop valves, pp. 1-7. , Orlando, USA; Kim, D.S., Lee, K.C., Kwon, T.H., Lee, S.S., Micro-channel filling flow considering surface tension effect (2002) Journal of Micromechanics and Microengineering, 12, p. 236; Xu, Z., Yu, X.Y., Du, L.Q., Yang, L.L., Liu, C., Thermoelectric effect on electroosmotic flow in microchannel (2009) Journal of Physics: Conference Series, 188, p. 012024; Hirt, C.W., Nichols, B.D., Volume of fluid (vof) method for the dynamics of free boundaries (1981) Journal of Computational Physics, 39, pp. 201-225; Tseng, F.G., Yang, I.D., Lin, K.H., Ma, K.T., Lu, M.C., Fluid filling into micro-fabricated reservoirs (2002) Sensors and Actuators A: Physical, 97-98, pp. 131-138; Ansys-Fluent, H., (2011), 36.5.4. Phase Interaction Dialog BoxBlake, T.D., The physics of moving wetting lines (2006) Journal of Colloid and Interface Science, 299, pp. 1-13; van Remoortere, P., Joos, P., The kinetics of wetting: The motion of a three phase contactline in a capillary (1991) Journal of Colloid and Interface Science, 141, pp. 348-359; Hirt, C.W., Chen, K.S., (1996) Simulation of slide-coating flows using a fixed grid and a vloume of fluid front-tracking technique, , New Orleans, Louisiana; Brackbill, J.U., Kothe, D.B., Zemach, C., A continuum method for modeling surface tension (1992) Journal of Computational Physics, 100, pp. 335-354; Rosengarten, G., Harvie, D.J.E., Cooper-White, J., Contact angle effects on microdroplet deformation using CFD (2006) Applied Mathematical Modelling, 30, pp. 1033-1042; Ashish, S.A., Mitra, S.K., Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow (2009) Journal of Colloid and Interface Science, 339, pp. 461-480; Grader, L., On the modelling of the dynamic contact angle (1986) Colloid and Polymer Science, 264, pp. 719-726; Popescu, M.N., Ralston, J., Sedev, R., Capillary Rise with Velocity-Dependent Dynamic Contact Angle (2008) Langmuir, 24, pp. 12710-12716; Hirt, C.W., Brethour, J.M., Moving contact lines on rough surfaces (2001) 4th European Coating Symposium Brussels; Shikhmurzaev, Y.D., Spreading of drops on solid surfaces in a quasi-static regime (1997) Physics of Fluids, 9, pp. 266-275; Issa, R.I., Solution of the implicitly discretised fluid flow equations by operator-splitting (1986) Journal of Computational Physics, 62, pp. 40-65; Glière, A., Delattre, C., Modeling and fabrication of capillary stop valves for planar microfluidic systems (2006) Sensors and Actuators A: Physical, 130-131, pp. 601-608; Cho, H., Kim, H.Y., Kang, J.Y., Kim, T.S., (2004) Capillary passive valve in microfluidic system, , Boston, Massachusetts; Danov, K.D., Valkovska, D.S., Kralchevsky, P.A., Adsorption Relaxation for Nonionic Surfactants under Mixed Barrier-Diffusion and Micellization-Diffusion Control (2002) Journal of Colloid and Interface Science, 251, pp. 18-25; Thio, T.H.G., Soroori, S., Ibrahim, F., Al-Faqheri, W., Soin, N., Theoretical development and critical analysis of burst frequency equations for passive valves on centrifugal microfluidic platforms (2013) Medical & Biological Engineering & Computing; Haeberle, S., Brenner, T., Zengerle, R., Ducree, J., Centrifugal extraction of plasma from whole blood on a rotating disk (2006) Lab on a Chip, 6, pp. 776-781; Yan, H., Zhang, B., Wu, H., Chemical cytometry on microfluidic chips (2008) Electrophoresis, 29, pp. 1775-1786; Jia, G., Ma, K.S., Kim, J., Zoval, J.V., Peytavi, R., Dynamic automated DNA hybridization on a CD (compact disc) fluidic platform (2006) Sensors and Actuators B: Chemical, 114, pp. 173-181; Cho, Y.K., Lee, J.G., Park, J.M., Lee, B.S., Lee, Y., (2007) One-Step Pathogen Specific DNA Extraction from Whole Blood on a Centrifugal Microfluidic Device, pp. 387-390. , 10-14 June 2007
Uncontrolled Keywords: capillary density; capillary pressure; centrifugal microfluidic platform; computational fluid dynamics; computer simulation; contact angle; hydrophilicity; hydrophobicity; mathematical computing; microfluidic analysis; theoretical model; validation process
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 12 Feb 2014 01:22
Last Modified: 06 Feb 2020 04:01
URI: http://eprints.um.edu.my/id/eprint/9284

Actions (login required)

View Item View Item