Stability, therrno-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid

Ijam, A. and Saidur, R. and Ganesan, P. and Golsheikh, A.M. (2015) Stability, therrno-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid. International Journal of Heat and Mass Transfer, 87. pp. 92-103. ISSN 0017-9310, DOI https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.060.

[img] PDF (Stability, therrno-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid)
Stability,_therrno-physical_properties,_and_electrical_conductivity_of_graphene_oxide.pdf - Published Version
Restricted to Repository staff only

Download (1MB) | Request a copy
Official URL: http://www.sciencedirect.com/science/article/pii/S...

Abstract

Stability, thermal conductivity, viscosity, specific heat, density and electrical conductivity of graphene oxide nanosheets-(60:40) deionized water/ethylene glycol (GONs-DW/EG) were experimentally examined. The stability of the nanofluids is examined with sedimentation time. Experiments were carried out with a weight fraction of (0.01-0.10) and different temperatures. Nanofluids were found to be stable for more than 2 months. The thermal conductivity is improved by 6.67-10.47 at a weight fraction of 0.10 and temperature of (25-45) degrees C. The nanofluids showed a shear thinning behavior at low shear rate; however, it behaved in Newtonian manner with higher shear rate. The viscosity of 0.10 wt. GONs-DW/EG nanofluid is increased by 35 compared to the base fluid at a temperature of 20 degrees C. However, it decreased by 48 with increasing the temperature from 20 to 60 degrees C for the same loading of GONs. The specific heat of the GONs-DW/EG nanofluid increased by 3.59-5.28 with a weight fraction of 0.05 and decreased by 9.05-8.215 with a weight fraction of 0.10 with temperature range of 20-60 degrees C. The density of the GONs-DW/EG nanofluid at weight fraction of 0.10 is decreased by 1.134-1 with temperature of 25-45 degrees C. An improvement in electrical conductivity of about 1664 is achieved at a weight fraction of 0.10 and temperature of 25 degrees C. Correlations were developed for predicting thermo-physical properties and electrical conductivity of the nanofluids based on the experimental data. (C) 2015 Elsevier Ltd, All rights reserved.

Item Type: Article
Funders: High Impact Research Grant (HIRG) Scheme (UM-MOHE) UM.C/HIR/MOHE/ENG/40
Additional Information: ISI Document Delivery No.: CL2DN Times Cited: 0 Cited Reference Count: 60 Cited References: Aravind SSJ, 2011, J APPL PHYS, V110, DOI 10.1063/1.3671613 ASHRAE, 2001, ASHRAE HDB FUND Baby TT, 2010, J APPL PHYS, V108, DOI 10.1063/1.3516289 Baby TT, 2011, NANOSCALE RES LETT, V6, P1 Balandin AA, 2008, NANO LETT, V8, P902, DOI 10.1021/nl0731872 BATCHELOR GK, 1977, J FLUID MECH, V83, P97, DOI 10.1017/S0022112077001062 BRINKMAN HC, 1952, J CHEM PHYS, V20, P571, DOI 10.1063/1.1700493 Choi SUS, 2001, APPL PHYS LETT, V79, P2252, DOI 10.1063/1.1408272 Choi S.U.S., 1995, DEV APPL NONNEWTONIA, V231, P99 Dhar P, 2013, APPL PHYS LETT, V102, DOI 10.1063/1.4802998 Duangthongsuk W, 2009, EXP THERM FLUID SCI, V33, P706, DOI 10.1016/j.expthermflusci.2009.01.005 Eastman JA, 2001, APPL PHYS LETT, V78, P718, DOI 10.1063/1.1341218 Einstein A., 1956, INVESTIGATIONS THEOR Elias MM, 2014, INT COMMUN HEAT MASS, V54, P48, DOI 10.1016/j.icheatmasstransfer.2014.03.005 Ganguly S, 2009, POWDER TECHNOL, V196, P326, DOI 10.1016/j.powtec.2009.08.010 Geim AK, 2007, NAT MATER, V6, P183, DOI 10.1038/nmat1849 Ghozatloo A, 2013, INT COMMUN HEAT MASS, V42, P89, DOI 10.1016/j.icheatmasstransfer.2012.12.007 Hajjar Z, 2014, INT COMMUN HEAT MASS, V57, P128, DOI 10.1016/j.icheatmasstransfer.2014.07.018 Huang NM, 2011, INT J NANOMED, V6, P3443, DOI 10.2147/IJN.S26812 Hunter R.J., 1981, COLLOID SCI ZETA POT Ijam A, 2014, J MATER SCI, V49, P5934, DOI 10.1007/s10853-014-8312-2 Jang SP, 2004, APPL PHYS LETT, V84, P4316, DOI 10.1063/1.1756684 John P., 2008, NANOTECHNOLOGY, V19 Keblinski P, 2002, INT J HEAT MASS TRAN, V45, P855, DOI 10.1016/S0017-9310(01)00175-2 Khanra P, 2012, CHEM ENG J, V183, P526, DOI 10.1016/j.cej.2011.12.075 Kole M, 2013, J APPL PHYS, V113, DOI 10.1063/1.4793581 Kumaresan V, 2012, THERMOCHIM ACTA, V545, P180, DOI 10.1016/j.tca.2012.07.017 Kwek D, 2010, J CHEM ENG DATA, V55, P5690, DOI 10.1021/je1006407 Lee GJ, 2014, J MATER SCI, V49, P1506, DOI 10.1007/s10853-013-7831-6 Lee S, 1999, J HEAT TRANS-T ASME, V121, P280, DOI 10.1115/1.2825978 Li HG, 2008, J PHYS CHEM B, V112, P10497, DOI 10.1021/jp802235g Liu J, 2014, RENEW ENERG, V63, P519, DOI 10.1016/j.renene.2013.10.002 Lyklema J., 2005, FUNDAMENTALS INTERFA Marcano DC, 2010, ACS NANO, V4, P4806, DOI 10.1021/nn1006368 Namburu PK, 2007, EXP THERM FLUID SCI, V32, P397, DOI 10.1016/j.expthermflusci.2007.05.001 Nasiri A, 2012, INT J HEAT MASS TRAN, V55, P1529, DOI 10.1016/j.ijheatmasstransfer.2011.11.004 Novoselov KS, 2005, NATURE, V438, P197, DOI 10.1038/nature04233 Pak BC, 1998, EXP HEAT TRANSFER, V11, P151, DOI 10.1080/08916159808946559 Park SS, 2014, J IND ENG CHEM, V20, P1911, DOI 10.1016/j.jiec.2013.09.011 Pastoriza-Gallego MJ, 2011, FLUID PHASE EQUILIBR, V300, P188, DOI 10.1016/j.fluid.2010.10.015 Sastry N.N.V., 2008, NANOTECHNOLOGY, V19 Sen Gupta S, 2011, J APPL PHYS, V110, DOI 10.1063/1.3650456 Shima PD, 2009, APPL PHYS LETT, V94, DOI 10.1063/1.3147855 Sudeep PM, 2014, RSC ADV, V4, P24887, DOI 10.1039/c4ra00843j Suganthi KS, 2014, INT J HEAT MASS TRAN, V71, P653, DOI 10.1016/j.ijheatmasstransfer.2013.12.044 Sundar LS, 2013, INT COMMUN HEAT MASS, V49, P17, DOI 10.1016/j.icheatmasstransfer.2013.08.026 Sundar LS, 2012, CHEM PHYS LETT, V554, P236, DOI 10.1016/j.cplett.2012.10.042 Sundar LS, 2014, INT COMMUN HEAT MASS, V56, P86, DOI 10.1016/j.icheatmasstransfer.2014.06.009 Sundar LS, 2013, INT COMMUN HEAT MASS, V41, P41, DOI 10.1016/j.icheatmasstransfer.2012.11.004 Sundar LS, 2014, INT COMMUN HEAT MASS, V57, P1, DOI 10.1016/j.icheatmasstransfer.2014.07.003 Teng TP, 2013, EXP THERM FLUID SCI, V49, P22, DOI 10.1016/j.expthermflusci.2013.03.007 Vajjha RS, 2009, INT J HEAT MASS TRAN, V52, P4675, DOI 10.1016/j.ijheatmasstransfer.2009.06.027 Wang BG, 2012, COLLOID SURFACE A, V414, P125, DOI 10.1016/j.colsurfa.2012.08.008 Wang BG, 2012, J MATER CHEM, V22, P12859, DOI 10.1039/c2jm31635h Wang BG, 2013, DALTON T, V42, P5866, DOI 10.1039/c3dt32981j Wang BG, 2010, J PHYS CHEM C, V114, P8749, DOI 10.1021/jp1005346 Wang XW, 1999, J THERMOPHYS HEAT TR, V13, P474, DOI 10.2514/2.6486 Xuan YM, 2000, INT J HEAT MASS TRAN, V43, P3701, DOI 10.1016/S0017-9310(99)00369-5 Yu W., 2010, NANOTECHNOLOGY, V21 Yu W, 2010, J APPL PHYS, V107, DOI 10.1063/1.3372733 Ijam, Ali Saidur, R. Ganesan, P. Golsheikh, A. Moradi Engineering, Faculty /I-7935-2015 Engineering, Faculty /0000-0002-4848-7052 High Impact Research Grant (HIRG) Scheme (UM-MOHE) UM.C/HIR/MOHE/ENG/40 The authors would like to thank Mr. Mohammed Ijam and Prof. Dunya Ijam for their support and valuable discussion. This work was supported by the High Impact Research Grant (HIRG) Scheme (UM-MOHE) Project No. UM.C/HIR/MOHE/ENG/40. 0 PERGAMON-ELSEVIER SCIENCE LTD OXFORD INT J HEAT MASS TRAN
Uncontrolled Keywords: Gons-dw/eg nanofluid, stability, thermo-physical properties and electrical conductivity, enhanced thermal-conductivity, ethylene-glycol, water mixture, heat-transfer, rheological properties, brownian-motion, nanoparticles, viscosity, temperature, particles,
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TJ Mechanical engineering and machinery
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 07 Mar 2016 06:41
Last Modified: 07 Mar 2016 06:41
URI: http://eprints.um.edu.my/id/eprint/15702

Actions (login required)

View Item View Item