Optimization of the activity of CaO/Al2O3 catalyst for biodiesel production using response surface methodology

Zabeti, M. and Daud, Wan Mohd Ashri Wan and Aroua, Mohamed Kheireddine (2009) Optimization of the activity of CaO/Al2O3 catalyst for biodiesel production using response surface methodology. Applied Catalysis A: General, 366 (1). pp. 154-159. ISSN 0926-860X, DOI https://doi.org/10.1016/j.apcata.2009.06.047.

Full text not available from this repository.
Official URL: https://doi.org/10.1016/j.apcata.2013.10.052


In this work the response surface methodology (RSM) in conjunction with the central composite design (CCD) were used to optimize the activity of CaO/Al2O3 solid catalysts for the production of biodiesel. In order to measure the catalyst activity, we used palm oil as a representative raw material for the conversion to biodiesel. The biodiesel production was carried out in a batch laboratory scale reactor. The results showed that both the calcination temperature and the amount of calcium oxide loaded on the support had significant positive effects on the biodiesel yield. The maximum basicity and biodiesel yield obtained were about 194 μmol/g and 94, respectively. Overall, the catalyst showed high performance at moderate operating conditions and its activity was maintained after two cycles.

Item Type: Article
Additional Information: Cited By (since 1996):37 Export Date: 21 April 2013 Source: Scopus CODEN: ACAGE :doi 10.1016/j.apcata.2009.06.047 Language of Original Document: English Correspondence Address: Daud, W.M.A.W.; Chemical Engineering Department, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia; email: ashri@um.edu.my References: Dalai, A.K., Kulkarni, M.G., Meher, L.C., IEEE EIC Climate Change Tech Conf. EICCCC 2006 art, , 4057358; López, D.E., Goodwin Jr., J.G., Bruce, D.A., Lotero, E., (2005) Appl. Catal., A: Gen., 295, pp. 97-105; Baroutian, S., Aroua, M.K., Raman, A.A.A., Sulaiman, N.M.N., (2008) J. Chem. Eng. Data, 53, pp. 877-880; Arzamendi, G., Campo, I., Arguiñarena, E., Sánchez, M., Montes, M., Gandía, L.M., (2007) Chem. Eng. J., 134, pp. 123-130; Bournay, L., Casanave, D., Delfort, B., Hillion, G., Chodorge, J.A., (2005) Catal. Today, 106, pp. 190-192; Dossin, T.F., Reyniers, M.F., Berger, R.J., Marin, G.B., (2006) Appl. Catal., B: Environ., 67, pp. 136-148; Mbaraka, I.K., Shanks, B.H., (2006) JAOCS, 83, pp. 79-91; Dossin, T.F., Reyniers, M.-F., Berger, R.J., Marin, G.B., (2006) Appl. Catal., B: Environ., 67, pp. 136-148; Chorkendorff, I., Niemantsverdriet, J.W., (2003) Concepts of Modern Catalysis and Kinetics. second ed., , Wiley-VCH, Germany; Kim, H.-J., Kang, B.-S., Kim, M.-J., Park, Y.M., Kim, D.-K., Lee, J.-S., Lee, K.-Y., (2004) Catal. Today, 93-95, pp. 315-320; Xie, W., Peng, H., Chen, L., (2006) App. Catal., A: Gen., 300, pp. 67-74; Albuquerque, M.C.G., Jiménez-Urbistondo, I., Santamaría-González, J., Mérida-Robles, J.M., Moreno-Tost, R., Rodríguez-Castellón, E., Jiménez-López, A., Maireles-Torres, P., (2008) Appl. Catal., A: Gen., 334, pp. 35-43; Demirbas, A., (2007) Energy Convers. Manage., 48, pp. 937-941; Granados, M.L., Poves, M.D.Z., Alonso, D.M., Mariscal, R., Galisteo, F.C., Moreno-Tost, R., Santamaría, J., Fierro, J.L.G., (2007) Appl. Catal., B: Environ., 73, pp. 317-326; Yang, Z., Xie, W., (2007) Fuel Process. Technol., 88, pp. 631-638; Xie, W., Huang, X., (2006) Catal. Lett., 107, pp. 53-59; Ramu, S., Lingaiah, N., Prabhavathi Devi, B.L.A., Prasad, R.B.N., Suryanarayana, I., Sai Prasad, P.S., (2004) Appl. Catal., A: Gen., 276, pp. 163-168; D'Cruz, A., Kulkarni, M.G., Meher, L.C., Dalai, A.K., (2007) JAOCS, 84, pp. 937-943; Tiwari, A.K., Kumar, A., Raheman, H., (2007) Biomass Bioenergy, 31, pp. 569-575; Ghafari, S., Aziz, H.A., Hasnain, M.I., Zinatizadeh, A.K., (2009) J. Hazard. Mater., 163 (2-3), pp. 650-656; Lima, A.A.G., Nele, M., Moreno, E.L., Andrade, H.M.C., (1998) Appl. Catal., A: Gen., 171 (1), pp. 31-43; Yang, W.D., Hung, K.M., Hsieh, C.S., (2002) Mater. Sci. Eng., A, 333 (1-2), pp. 123-133; Vicente, G., Martínez, M., Aracil, J., (2007) Bioresour. Technol., 98, pp. 1724-1733; Kuo, J., Bourell, D.L., (1997) J. Mater. Sci., 32, pp. 2687-2692; Kouzu, M., Kasuno, T., Tajika, M., Yamanaka, S., Hidaka, J., (2008) Appl. Catal., A: Gen., 334, pp. 357-365; Liu, X., He, H., Wang, Y., Zhu, S., (2007) Catal. Commun., 8, pp. 1107-1111; Benjapornkulaphong, S., Ngamcharussrivichai, C., Bunyakiat, K., (2009) Chem. Eng. J., 145, pp. 468-474
Uncontrolled Keywords: Alumina; Calcium oxide; Optimization; Solid catalyst; Transesterification; Biodiesel production; Calcination temperature; Central composite designs; Laboratory-scale reactor; Operating condition; Palm oil; Positive effects; Response Surface Methodology; Solid catalysts; Biodiesel; Calcination; Calcium; Calcium alloys; Catalysis; Esterification; Lime; Surface properties; Vegetable oils; Catalyst activity.
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TP Chemical technology
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 16 Jul 2013 06:51
Last Modified: 19 Sep 2019 08:37
URI: http://eprints.um.edu.my/id/eprint/7436

Actions (login required)

View Item View Item