Treatment technologies for petroleum refinery effluents: a review

Diya'uddeen, B.H. and Daud, Wan Mohd Ashri Wan and Abdul Raman, Abdul Aziz (2011) Treatment technologies for petroleum refinery effluents: a review. Process Safety and Environmental Protection, 89 (2). pp. 95-105. ISSN 09575820 (ISSN),

[img] PDF
Restricted to Registered users only

Download (391kB) | Request a copy


This paper presents a brief account of different technologies used for the treatment of petroleum refinery effluents (PRE). Broadly, PRE treatment is accomplished in two stages, namely, a series of pre-treatment steps, in which suspended matter, oil and grease are reduced, and an advanced stage, in which wastewater contaminants are decreased to certain acceptable discharge limits. Photocatalytic degradation techniques have been widely used in water and wastewater treatment. However, the literature regarding PRE treatment is scarce, and the technique is still not being utilised on an industrial scale in refineries. This is largely due to limited research findings discussing PRE treatments. Most researches are focused on treating singular contaminants found in PRE, e.g., phenols, sulphides, oil, grease and other organic components. This review focused on works that investigated PRE treatment by monitoring general refinery wastewater parameters, namely, chemical oxygen demand (COD), biological oxygen demand (BOD), total petroleum hydrocarbon (TPH), oil and grease (O&G), sulphate and phenols at the advanced treatment steps. This paper presents an overview of photocatalytic degradation and discusses published works with the goal of presenting the technique as an attractive and viable process unit. If optimised, this process has great potential for replacing other separation and degradation treatment approaches employed at the advanced treatment stage for PRE. © 2010 The Institution of Chemical Engineers.

Item Type: Article
Additional Information: Cited By (since 1996): 9 Export Date: 4 November 2012 Source: Scopus Language of Original Document: English Correspondence Address: Diya'Uddeen, B. H.; Chemical Engineering Department, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; email: References: Abdelwahab, O., Amin, N.K., El-Ashtoukhy, E.-S.Z., Electrochemical removal of phenol from oil refinery wastewater (2009) J. Hazard. Mater., 163, pp. 711-716; Adams, M., Campbell, I., Robertson, P.K.J., Novel photocatalytic reactor development for removal of hydrocarbons from water (2008) Int. J. Photoenergy, p. 7; Akpan, U.G., Hameed, B.H., Parameters affecting the photocatalytic degradation of dyes using TiO 2-based photocatalysts: A review (2009) J. Hazard. Mater., 170, pp. 520-529; Al-Bastaki, N.M., Performance of advanced methods for treatment of wastewater: UV/TiO 2, RO and UF (2004) Chemical Engineering and Processing: Process Intensification, 43 (7), pp. 935-940. , DOI 10.1016/j.cep.2003.08.003, PII S0255270103001545; Al-Rasheed, R.A., Water treatment by heterogeneous photocatalysis an overview (2005) Paper Presented at 4th SWCC Acquired Experience Symposium Held in Jeddah; Al-Sayyed, C., D'Oliveira, J.C., Pichat, P., Semiconductor-sensitized photodegradation of 4-chlorophenol in water (1991) J. Photochem. Photobiol. A: Chem., 58, pp. 99-114; Al Zarooni, M., Elshorbagy, W., Characterization and assessment of Al Ruwais refinery wastewater (2006) Journal of Hazardous Materials, 136 (3), pp. 398-405. , DOI 10.1016/j.jhazmat.2005.09.060, PII S030438940500645X; Alhakimi, G., Studnicki, L.H., Al-Ghazali, M., Photocatalytic destruction of potassium hydrogen phthalate using TiO 2 and sunlight: Application for the treatment of industrial wastewater (2003) Journal of Photochemistry and Photobiology A: Chemistry, 154 (2-3), pp. 219-228. , PII S1010603002003295; Altas, L., Buyukgungor, H., Sulfide removal in petroleum refinery wastewater by chemical precipitation (2008) Journal of Hazardous Materials, 153 (1-2), pp. 462-469. , DOI 10.1016/j.jhazmat.2007.08.076, PII S0304389407012654; Attiogbe, F.K., Glover-Amengor, M., Nyadziehe, K.T., Correlating biochemical and chemical oxygen demand of effluents - A case study of selected industries in Kumasi, Ghana (2007) W. Afr. J. Appl. Ecol., 11, pp. 110-118; Bagajewicz, M., A review of recent design procedures for water networks in refineries and process plants (2000) Comp. Chem. Eng., 24, pp. 2093-2113; Chan, A.H.C., Chan, C.K., Barford, J.P., Porter, J.F., Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater (2003) Water Research, 37 (5), pp. 1125-1135. , DOI 10.1016/S0043-1354(02)00465-7, PII S0043135402004657; Chavan, A., Mukherji, S., Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: Effect of N:P ratio (2008) Journal of Hazardous Materials, 154 (1-3), pp. 63-72. , DOI 10.1016/j.jhazmat.2007.09.106, PII S0304389407013982; Chen, J., Liu, M., Zhang, J., Ying, X., Jin, L., Photocatalytic degradation of organic wastes by electrochemically assisted TiO 2 photocatalytic system (2004) Journal of Environmental Management, 70 (1), pp. 43-47. , DOI 10.1016/j.jenvman.2003.09.019; Chen, J., Ollis, D.F., Rulkens, W.H., Bruning, H., Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO 2 and metallized TiO 2 suspensions. Part (II): Photocatalytic mechanisms (1999) Water Research, 33 (3), pp. 669-676. , DOI 10.1016/S0043-1354(98)00262-0, PII S0043135498002620; Coelho, A., Castro, A.V., Dezotti, M., Sant'Anna Jr., G.L., Treatment of petroleum refinery sourwater by advanced oxidation processes (2006) Journal of Hazardous Materials, 137 (1), pp. 178-184. , DOI 10.1016/j.jhazmat.2006.01.051, PII S0304389406000781; Demirci, S., Erdogan, B., Ozcimder, R., Wastewater treatment at the petroleum refinery, Kirikkale, Turkey using some coagulants and Turkish clays as coagulant aids (1998) Water Research, 32 (11), pp. 3495-3499. , DOI 10.1016/S0043-1354(98)00111-0, PII S0043135498001110; Dijkstra, M.F.J., Buwalda, H., De Jong, A.W.F., Michorius, A., Winkelman, J.G.M., Beenackers, A.A.C.M., Experimental comparison of three reactor designs for photocatalytic water purification (2001) Chemical Engineering Science, 56 (2), pp. 547-555. , DOI 10.1016/S0009-2509(00)00259-1, PII S0009250900002591; Doggett, T., Rascoe, A., (2009) Global Energy Demand Seen Up 44 Percent by 2030, ,; El-Naas, M.H., Al-Zuhair, S., Alhaija, M.A., Reduction of COD in refinery wastewater through adsorption on Date-Pit activated carbon (2009) J. Hazard. Mater., 173, pp. 750-757; El-Naas, M.H., Al-Zuhair, S., Al-Lobaney, A., Makhlouf, S., Assessment of electrocoagulation for the treatment of petroleum refinery wastewater (2009) J. Environ. Manage., 91, pp. 180-185; (2009) Petroleum Refining in Pollution Prevention and Abatement Handbook, ,, Environmental Health Safety Guidelines (accessed27.09.09); Faramarzpour, M., Vossoughi, M., Borghei, M., Photocatalytic degradation of furfural by titanioa nanoparticles in a floating-bed photoreactor (2009) Chem. Eng. J., 146, pp. 79-85; Fox, M.A., Dulay, M.T., Acceleration of secondary dark reactions of intermediates derived from adsorbed dyes on irradiated TiO 2 powders (1996) Journal of Photochemistry and Photobiology A: Chemistry, 98 (1-2), pp. 91-101. , PII S1010603096043420; Fratila-Apachitei, L.E., Kennedy, M.D., Linton, J.D., Blume, I., Schippers, J.C., Influence of membrane morphology on the flux decline during dead-end ultrafiltration of refinery and petrochemical waste water (2001) J. Membr. Sci., 182, pp. 151-159; Fujishima, A., Honda, K., Electrochemical photolysis of water at a semiconductor electrode (1972) Nature, 238, pp. 37-38; Fujishima, A., Zhang, X., Tryk, D.A., TiO 2 photocatalysis and related surface phenomena (2008) Surf. Sci. Rep., 63, pp. 515-582; Gao, W., Habib, M., Smith, D.W., Removal of organic contaminants and toxicity from industrial effluents using freezing processes (2009) Desalination, 245, pp. 108-119; Gaya, U.I., Abdullah, A.H., Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems (2008) Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 (1), pp. 1-12. , DOI 10.1016/j.jphotochemrev.2007.12.003, PII S1389556708000300; Gernjak, W., Krutzler, T., Glaser, A., Malato, S., Caceres, J., Bauer, R., Fernandez-Alba, A.R., Photo-fenton treatment of water containing natural phenolic pollutants (2003) Chemosphere, 50 (1), pp. 71-78. , DOI 10.1016/S0045-6535(02)00403-4, PII S0045653502004034; Grzechulska, J., Hamerski, M., Morawski, A.W., Photocatalytic decomposition of oil in water (2000) Water Res., 34, pp. 1638-1644; Guo, J., Al-Dahhan, M., Catalytic wet air oxidation of phenol in concurrent downflow and upflow packed-bed reactors over pillared clay catalyst (2005) Chemical Engineering Science, 60 (3), pp. 735-746. , DOI 10.1016/j.ces.2004.08.043, PII S0009250904006591; Habibi, M.H., Vosooghian, H., Photocatalytic degradation of some organic sulfides as environmental pollutants using titanium dioxide suspension (2005) Journal of Photochemistry and Photobiology A: Chemistry, 174 (1), pp. 45-52. , DOI 10.1016/j.jphotochem.2005.02.012, PII S1010603005001048; Hami, M.L., Al-Hashimi, M.A., Al-Doori, M.M., Effect of activated carbon on BOD and COD removal in a dissolved air flotation unit treating refinery wastewater (2007) Desalination, 216 (1-3), pp. 116-122. , DOI 10.1016/j.desal.2007.01.003, PII S0011916407004298; Harry, M.F., (1995) Industrial Pollution Handbook, , McGraw Hill. Inc. New York; Herrmann, J.-M., Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants (1999) Catalysis Today, 53 (1), pp. 115-129. , PII S0920586199001078; Holubar, P., Grundke, T., Moser, A.S.B., Braun, R., Effects of bacterivorous ciliated protozoa on degradation efficiency of petrochemical activated sludge (2000) Water Res., 34, pp. 2051-2060; Hong, S.-S., Ju, C.-S., Lim, C.-G., Ahn, B.-H., Lim, K.-T., Lee, G.-D., A photocatalytic degradation of phenol over TiO 2 prepared by sol-gel method (2001) Journal of Industrial and Engineering Chemistry, 7 (2), pp. 99-104; Huang, C.-R., Shu, H.-Y., The reaction kinetics, decomposition pathways and intermediate formations of phenol in ozonation, UV/O 3, and UV/H 2O 2 processes (1995) J. Hazard. Mater., 41, pp. 47-64; Jain, R., Shrivastava, M., Photocatalytic removal of hazardous dye cyanosine from industrial waste using titanium dioxide (2008) Journal of Hazardous Materials, 152 (1), pp. 216-220. , DOI 10.1016/j.jhazmat.2007.06.119, PII S0304389407009685; Jean, D.S., Lee, D.J., Wu, J.C.S., Separation of oil from oily sludge by freezing and thawing (1999) Water Research, 33 (7), pp. 1756-1759. , DOI 10.1016/S0043-1354(99)00005-6, PII S0043135499000056; Jou, C.-J.G., Huang, G.-C., A pilot study for oil refinery wastewater treatment using a fixed film bioreactor (2003) Advances in Environmental Research, 7 (2), pp. 463-469. , DOI 10.1016/S1093-0191(02)00016-3, PII S1093019102000163; Kabir, M.F., Vaisman, E., Langford, C.H., Kantzas, A., Effects of hydrogen peroxide in a fluidized bed photocatalytic reactor for wastewater purification (2006) Chem. Eng. J., 118, pp. 207-212; Kavitha, V., Palanivelu, K., The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol (2004) Chemosphere, 55 (9), pp. 1235-1243. , DOI 10.1016/j.chemosphere.2003.12.022, PII S0045653504000487; Knap, A.H., Williams Le, B.P.J., Experimental studies to determine the fate of petroleum hydrocarbons from refinery effluent on an estuarine system (1982) Environmental Science and Technology, 16 (1), pp. 1-4; Kobayakawa, K., Sato, C., Sato, Y., Fujishima, A., Continuous-flow photoreactor packed with titanium dioxide immobilized on large silica gel beads to decompose oxalic acid in excess water (1998) Journal of Photochemistry and Photobiology A: Chemistry, 118 (1), pp. 65-69. , PII S1010603098003487; Kuyukina, M.S., Ivshina, I.R., Serebrennikova, M.K., Krivorutchko, A.B., Podorozhko, E.A., Ivanov, R.V., Lozinsky, V.I., Petroleum-contaminated water treatment in a fluidized-bed bioreactor with immobilized Rhodococcus cells (2009) Int. Biodeterioration Biodegrad., 63, pp. 427-432; Laoufi, N.A., Tassalit, D., Bentahar, F., The degradation of phenol in water solution by TiO 2 photocatalyst in a chemical reactor (2008) Global NEST J., 10, pp. 404-418; Lathasree, S., Rao, N., Sivashankar, B., Sadasivam, V., Rengaraj, K., Heterogeneous photo catalytic mineralization of phenols in aqueous solutions (2004) J. Mol. Catal. A: Chem., 223, pp. 101-105; Li, Y.S., Yan, L., Xiang, C.B., Hong, L.J., Treatment of oily wastewater by organic-inorganic composite tubular ultrafiltration (UF) membranes (2006) Desalination, 196 (1-3), pp. 76-83. , DOI 10.1016/j.desal.2005.11.021, PII S0011916406004243; Li, G., An, T., Chen, J., Sheng, G., Fu, J., Chen, F., Zhang, S., Zhao, H., Photoelectrocatalytic decontamination of oilfield produced wastewater containing refractory organic pollutants in the presence of high concentration of chloride ions (2006) Journal of Hazardous Materials, 138 (2), pp. 392-400. , DOI 10.1016/j.jhazmat.2006.05.083, PII S0304389406005474; Li Puma, G., Yue, P.L., Modelling and design of thin-film slurry photocatalytic reactors for water purification (2003) Chemical Engineering Science, 58 (11), pp. 2269-2281. , DOI 10.1016/S0009-2509(03)00086-1; Lin, H.T., (2005) Photocatalysis in A Novel Semiconducting Optical Fiber Monolithic Reactor for Wastewater Treatment, , PhD Thesis, Louisiana State University; Ma, F., Guo, J.-B., Zhao, L.-J., Chang, C.-C., Cui, D., Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater (2009) Bioresour. Technol., 100, pp. 597-602; Marcilly, C., Present status and future trends in catalysis for refining and petrochemicals (2003) J. Catal., 216, pp. 47-62; Minero, C., Maurino, V., Pelizzetti, E., Photocatalytic transformations of hydrocarbons at the sea water / air interface under solar radiation (1997) Marine Chemistry, 58 (3-4), pp. 361-372. , DOI 10.1016/S0304-4203(97)00062-5, PII S0304420397000625; Mrayyana, B., Battikhi, M.N., Biodegradation of total organic carbons (TOC) in Jordanian petroleum sludge (2005) J. Hazard. Mater., 120, pp. 127-134; Ochieng, A., Odiyo, J.O., Mutsago, M., Biological treatment of mixed industrial wastewaters in a fluidised bed reactor (2003) Journal of Hazardous Materials, 96 (1), pp. 79-90. , DOI 10.1016/S0304-3894(02)00166-8, PII S0304389402001668; Ojuola, E.A., Onuoha, G.C., The effect of liquid petroleum refinery effluent on fingerlings of Sarotherodon melanotheron (Ruppel 1852) and Oreochromis niloticus (Linnaeus 1757) (1987) FAO Corporate Document Repository, , Project RAF/82/009; Pardeshi, S.K., Patil, A.B., A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy (2008) Solar Energy, 82, pp. 700-705; Poulton, S.W., Krom, M.D., Van Rijn, J., Raiswell, R., The use of hydrous iron (III) oxides for the removal of hydrogen sulphide in aqueous systems (2002) Water Research, 36 (4), pp. 825-834. , DOI 10.1016/S0043-1354(01)00314-1, PII S0043135401003141; Rahman, M.M., Al-Malack, M.H., Performance of a crossflow membrane bioreactor (CF-MBR) when treating refinery wastewater (2006) Desalination, 191, pp. 16-26; Rajeshwar, K., Osugi, M.E., Chanmanee, W., Chenthamarakshan, C.R., Zanoni, M.V.B., Kajitvichyanukul, P., Krishnan-Ayer, R., Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media (2008) J. Photochem. Photobiol. C: Photochem. Rev., 9, pp. 171-192; Renault, F., Sancey, B., Badot, P.-M., Crini, G., Chitosan for coagulation/flocculation processes - An eco-friendly approach (2009) Eur. Polym. J., 45, pp. 1337-1348; Saien, J., Nejati, H., Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions (2007) Journal of Hazardous Materials, 148 (1-2), pp. 491-495. , DOI 10.1016/j.jhazmat.2007.03.001, PII S0304389407003494; Sakthivel, S., Shankar, M.V., Palanichamy, M., Arabindoo, B., Murugesan, V., Photocatalytic decomposition of leather dye: Comparative study of TiO 2 supported on alumina and glass beads (2002) J. Photochem. Photobiol. A: Chem., 148, pp. 153-159; Santos, F.V., Azevedo, E.B., Sant'Anna Jr., G.L., Dezotti, M., Photocatalysis as a tertiary treatment for petroleum refinery wastewaters (2006) Braz. J. Chem. Eng., 23, pp. 450-460; Satyawali, Y., Balakrishnan, M., Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: A review (2008) Journal of Environmental Management, 86 (3), pp. 481-497. , DOI 10.1016/j.jenvman.2006.12.024, PII S0301479706004245; Serafim, A.J., (1979) Solid Retention Time on Carbon Adsorption of Organics in Secondary Effluents from Treatment of Petroleum Refinery Waste, , PhD Thesis, Texas A&M University; Shokrollahzadeh, S., Azizmohseni, F., Golmohammad, F., Shokouhi, H., Khademhaghighat, F., Biodegradation potential and bacterial diversity of a petrochemical wastewater treatment plant in Iran (2008) Bioresour. Technol., 99, pp. 6127-6133; Silva, A.M.T., Nouli, E., Xekoukoulotakis, N.P., Mantzavinos, D., Effect of key operating parameters on phenols degradation during H 2O 2-assisted TiO 2 photocatalytic treatment of simulated and actual olive mill wastewaters (2007) Applied Catalysis B: Environmental, 73 (1-2), pp. 11-22. , DOI 10.1016/j.apcatb.2006.12.007, PII S0926337306004838; Squillance, P.J., Zogorski, J.S., Wilber, W.G., Price, C.V., Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States, 1993-1994 (1996) Environ. Sci. Technol., 30, pp. 1721-1730; Stepnowski, P., Siedlecka, E.M., Behrend, P., Jastorff, B., Enhanced photo-degradation of contaminants in petroleum refinery wastewater (2002) Water Research, 36 (9), pp. 2167-2172. , DOI 10.1016/S0043-1354(01)00450-X, PII S004313540100450X; Sun, Y., Zhan
Uncontrolled Keywords: Environmental pollution Petroleum effluent Photocatalytic degradation Advanced treatment Biological oxygen demand Discharge limit Environmental pollutions Industrial scale Oil and grease Organic components Photo catalytic degradation Pre-Treatment Process unit Refinery wastewaters Sulphates Suspended matters Total petroleum hydrocarbons Treatment technologies Two stage Water and wastewater Biochemical oxygen demand Biological water treatment Effluents Hydrocarbons Oxygen Petroleum chemistry Petroleum refineries Phenols Photodegradation Pollution Refining Wastewater Wastewater treatment Chemicals removal (water treatment)
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering
Depositing User: Mr. Mohammed Salim Abd Rahman
Date Deposited: 15 Jan 2013 01:53
Last Modified: 06 Dec 2019 08:13

Actions (login required)

View Item View Item