Efficient river water quality index prediction considering minimal number of inputs variables

Othman, Faridah and Alaaeldin, M.E. and Seyam, Mohammed and Ahmed, Ali Najah and Teo, Fang Yenn and Chow, Ming Fai and Afan, Haitham Abdulmohsin and Sherif, Mohsen and Sefelnasr, Ahmed and El-Shafie, Ahmed (2020) Efficient river water quality index prediction considering minimal number of inputs variables. Engineering Applications of Computational Fluid Mechanics, 14 (1). pp. 751-763. ISSN 1994-2060, DOI https://doi.org/10.1080/19942060.2020.1760942.

Full text not available from this repository.
Official URL: https://doi.org/10.1080/19942060.2020.1760942


Water Quality Index (WQI) is the most common determinant of the quality of the stream-flow. According to the Department of Environment (DOE, Malaysia), WQI is chiefly affected by six factors, which are, chemical oxygen demand (COD), biochemical oxygen demand (BOD), dissolved oxygen (DO), suspended solids (SS), -potential for hydrogen (pH), and ammoniacal nitrogen (AN). In fact, understanding the inter-relationships between these variables and WQI can improve predicting the WQI for better water resources management. The aim of this study is to create an input approach using ANNs (Artificial Neural Networks) to compute the WQI from input parameters instead of using the indices of the parameters when one of the parameters is absent. The data are collected from the nine water quality monitoring stations at the Klang River basin, Malaysia. In addition, comprehensive sensitivity analysis has been carried out to identify the most influential input parameters. The model is based on the frequency distribution of the significant factors showed exceptional ability to replicate the WQI and attained very high correlation (98.78%). Furthermore, the sensitivity analysis showed that the most influential parameter that affects WQI is DO, while pH is the least one. Additionally, the performance of models shows that the missing DO values caused deterioration in the accuracy. © 2020, © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Item Type: Article
Funders: University of Malaya Research Grants (RU001-2017C, GPF070A-2018, RF015B-2018), 2020106TELCO grant by the Innovation & Research Management Center (iRMC), Universiti Tenaga Nasional (UNITEN)
Uncontrolled Keywords: Surface water hydrology; Artificial Neural Networks; modelling; water quality index
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 25 Aug 2020 04:27
Last Modified: 25 Aug 2020 04:27
URI: http://eprints.um.edu.my/id/eprint/25441

Actions (login required)

View Item View Item