Non-tuned machine learning approach for hydrological time series forecasting

Yaseen, Zaher Mundher and Allawi, Mohammed Falah and Yousif, Ali A. and Jaafar, Othman and Hamzah, Firdaus Mohamad and El-Shafie, Ahmed (2018) Non-tuned machine learning approach for hydrological time series forecasting. Neural Computing and Applications, 30 (5). pp. 1479-1491. ISSN 0941-0643, DOI

Full text not available from this repository.
Official URL:


Stream-flow forecasting is a crucial task for hydrological science. Throughout the literature, traditional and artificial intelligence models have been applied to this task. An attempt to explore and develop better expert models is an ongoing endeavor for this hydrological application. In addition, the accuracy of modeling, confidence and practicality of the model are the other significant problems that need to be considered. Accordingly, this study investigates modern non-tuned machine learning data-driven approach, namely extreme learning machine (ELM). This data-driven approach is containing single layer feedforward neural network that selects the input variables randomly and determine the output weights systematically. To demonstrate the reliability and the effectiveness, one-step-ahead stream-flow forecasting based on three time-scale pattern (daily, mean weekly and mean monthly) for Johor river, Malaysia, were implemented. Artificial neural network (ANN) model is used for comparison and evaluation. The results indicated ELM approach superior the ANN model level accuracies and time consuming in addition to precision forecasting in tropical zone. In measureable terms, the dominance of ELM model over ANN model was indicated in accordance with coefficient determination (R2) root-mean-square error (RMSE) and mean absolute error (MAE). The results were obtained for example the daily time scale R2 = 0.94 and 0.90, RMSE = 2.78 and 11.63, and MAE = 0.10 and 0.43, for ELM and ANN models respectively.

Item Type: Article
Uncontrolled Keywords: Artificial neural network; Extreme learning machine; Multiple time horizons; Stream-flow forecasting; Tropical environment
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 14 Feb 2019 04:08
Last Modified: 14 Feb 2019 04:08

Actions (login required)

View Item View Item