Single Negative Metamaterial-Based Hollow-Core Bandgap Fiber With Multilayer Cladding

Shawon, M.J. and Mahdiraji, G.A. and Hasan, M.M. and Shakibaei, B.H. and Gang, S.Y. and Mahdy, M.R.C. and Adikan, Faisal Rafiq Mahamd (2015) Single Negative Metamaterial-Based Hollow-Core Bandgap Fiber With Multilayer Cladding. IEEE Photonics Journal, 7 (6). ISSN 1943-0655, DOI

Full text not available from this repository.
Official URL:


We propose a single negative metamaterial (MTM)-based hollow-core fiber with multilayer cladding employing zero-effective-phase bandgap for optical confinement in this paper. The cladding is formed from a ternary 1-D photonic crystal (T-1DPC) unit cell, which is basically a Mu-negative material sandwiched by different Mu-negative and Epsilon-negative materials. We demonstrate its capability for broadband transmission by numerically simulating and analyzing the photonic bandgap (PBG) and the modal loss characteristics. The results show that the T-1DPC-based cladding can effectively broaden the PBG. Compared with that for the binary 1-D photonic crystal unit cell-based fiber, the radiation loss for the T-1DPC-based fiber can be reduced by three orders of magnitude over most of the PBG range for equal number of unit cells. This MTM fiber, depending on the operating wavelength, shows surface plasmon guidance or classical wave guidance or both simultaneously. We also investigate the effect of variations in the design parameters and material absorption on the wave guidance of this fiber.

Item Type: Article
Uncontrolled Keywords: Metamaterial; Waveguide; Surface plasmon; Zero effective phase; Cladding mode; Spatially Averaged Single Negative (SASN) bandgap
Subjects: Q Science > QC Physics
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering
Depositing User: Mrs. Siti Mawarni Salim
Date Deposited: 14 Sep 2016 06:34
Last Modified: 11 Oct 2018 02:09

Actions (login required)

View Item View Item