Two-phase analysis of a helical microchannel heat sink using nanofluids

Narrein, K. and Sivasankaran, S. and Ganesan, P. (2015) Two-phase analysis of a helical microchannel heat sink using nanofluids. Numerical Heat Transfer, Part A: Applications, 68 (11). pp. 1266-1279. ISSN 1040-7782, DOI

[img] PDF (Two-Phase Analysis of a Helical Microchannel Heat Sink Using Nanofluids)
Two-Phase_Analysis_of_a_Helical_Microchannel_Heat_Sink_Using_Nanofluids.pdf - Published Version
Restricted to Repository staff only

Download (1MB) | Request a copy
Official URL:


A three-dimensional helical microchannel heat sink (HMCHS) model is developed to investigate the heat transfer characteristics using Al2O3-water-based nanofluid. The two-phase mixture model with modified effective thermal conductivity and viscosity equations is employed for solving the problem numerically. The model developed is validated by comparing the results of Nusselt number with available experimental and numerical data for a wide range of Reynolds number. The detailed results of the thermal field are reported for the effects of helix radius (0.15-0.30mm), pitch (0.5-2.0mm), number of turns (7-10), and aspect ratio (1.5-3.0). The analysis presents a unique fundamental insight into the complex secondary flow pattern in the channel due to curvature effects.

Item Type: Article
Funders: University of Malaya Ministry of Higher Education High Impact Research UM.C/HIR/MOHE/ENG/20, University Malaya Research Grant UMRG: RG121/11AET
Additional Information: ISI Document Delivery No.: CL1CN Times Cited: 0 Cited Reference Count: 36 Cited References: Abouali O., 2010, J HEAT TRANSF, V4, P132 Akhtari M, 2013, NUMER HEAT TR A-APPL, V63, P941, DOI 10.1080/10407782.2013.772855 Chamkha AJ, 2014, NUMER HEAT TR A-APPL, V65, P1089, DOI 10.1080/10407782.2013.851560 Choi SK, 2014, NUMER HEAT TR A-APPL, V65, P287, DOI 10.1080/10407782.2013.831695 Chu JC, 2010, APPL THERM ENG, V30, P1558, DOI 10.1016/j.applthermaleng.2010.03.008 Chu JC, 2012, EXP THERM FLUID SCI, V38, P171, DOI 10.1016/j.expthermflusci.2011.11.015 Corcione M, 2013, INT J THERM SCI, V71, P182, DOI 10.1016/j.ijthermalsci.2013.04.005 Corcione M, 2010, INT J THERM SCI, V49, P1536, DOI 10.1016/j.ijthermalsci.2010.05.005 Fazeli SA, 2012, SUPERLATTICE MICROST, V51, P247, DOI 10.1016/j.spmi.2011.11.017 Fluent, 2000, FLUENT 6 US GUID Harms TM, 1999, INT J HEAT FLUID FL, V20, P149, DOI 10.1016/S0142-727X(98)10055-3 Heris SZ, 2007, NUMER HEAT TR A-APPL, V52, P1043, DOI 10.1080/10407780701364411 Jang SP, 2006, APPL THERM ENG, V26, P2457, DOI 10.1016/j.applthermaleng.2006.02.036 Kalteh M, 2012, APPL THERM ENG, V36, P260, DOI 10.1016/j.applthermaleng.2011.10.023 Kays W. M., 1993, CONVECTIVE HEAT MASS, P125 Koo J, 2005, INT J HEAT MASS TRAN, V48, P2652, DOI 10.1016/j.ijheatmasstransfer.2005.01.029 KUIPERS JAM, 1992, AICHE J, V38, P1079, DOI 10.1002/aic.690380711 Li J, 2008, INT J HEAT FLUID FL, V29, P1221, DOI 10.1016/j.ijheatfluidflow.2008.01.005 Liu KY, 2013, MICROSYST TECHNOL, V19, P1033, DOI 10.1007/s00542-012-1695-6 Lotfi R, 2010, INT COMMUN HEAT MASS, V37, P74, DOI 10.1016/j.icheatmasstransfer.2009.07.013 Mohammed HA, 2012, INT COMMUN HEAT MASS, V39, P1375, DOI 10.1016/j.icheatmasstransfer.2012.07.019 Moraveji MK, 2014, NUMER HEAT TR A-APPL, V66, P315, DOI 10.1080/10407782.2013.872976 Morini GL, 2004, INT J THERM SCI, V43, P631, DOI 10.1016/j.ijthermalsci.2004.01.003 Narrein K, 2013, THERMOCHIM ACTA, V564, P13, DOI 10.1016/j.tca.2013.04.004 Nasrin R, 2013, NUMER HEAT TR A-APPL, V64, P820, DOI 10.1080/10407782.2013.798536 Poh ST, 1998, EL PACKAG TECH CONF, P246 Seyf HR, 2012, INT J THERM SCI, V58, P168, DOI 10.1016/j.ijthermalsci.2012.02.018 Sheu TS, 2012, CHEM ENG SCI, V71, P321, DOI 10.1016/j.ces.2011.12.042 Svino J. M., 1964, INT J HEAT MASS TRAN, V16, P733 Tuckerman D. B., 1998, P 32 EL COMP C IEEE, P145 TUCKERMAN DB, 1981, ELECTRON DEVIC LETT, V2, P126 Wen DS, 2004, INT J HEAT MASS TRAN, V47, P5181, DOI 10.1016/j.ijheatmasstransfer.2004.07.012 Xi YM, 2010, EXP THERM FLUID SCI, V34, P1309, DOI 10.1016/j.expthermflusci.2010.06.002 Xin RC, 1996, INT J HEAT MASS TRAN, V39, P735, DOI 10.1016/0017-9310(95)00164-6 Yamada T, 2012, NUMER HEAT TR A-APPL, V61, P323, DOI 10.1080/10407782.2011.648058 Zhang YW, 2009, NUMER HEAT TR A-APPL, V56, P325, DOI 10.1080/10407780903163876 Narrein, K. Sivasankaran, S. Ganesan, P. Engineering, Faculty /I-7935-2015 Engineering, Faculty /0000-0002-4848-7052 University of Malaya; Ministry of Higher Education High Impact Research UM.C/HIR/MOHE/ENG/20; University Malaya Research Grant UMRG: RG121/11AET This research was financially supported by the University of Malaya, Ministry of Higher Education High Impact Research (UM.C/HIR/MOHE/ENG/20), and University Malaya Research Grant (UMRG: RG121/11AET). 0 TAYLOR & FRANCIS INC PHILADELPHIA NUMER HEAT TR A-APPL
Uncontrolled Keywords: Curved rectangular microchannels, natural-convection, pressure-drop, coiled tube, forced-convection, flow, performance, micromixer, simulation, exchanger,
Subjects: T Technology > T Technology (General)
T Technology > TJ Mechanical engineering and machinery
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 09 Jun 2016 00:24
Last Modified: 30 Aug 2019 08:47

Actions (login required)

View Item View Item