Recovery and reutilisation of copper from metal hydroxide sludges

Sethu, V.S. and Abdul Raman, Abdul Aziz and Aroua, M.K. (2008) Recovery and reutilisation of copper from metal hydroxide sludges. Clean Technologies and Environmental Policy, 10 (2). pp. 131-136. ISSN 1618-954X,

[img] PDF
Sethu-2008-Recovery_and_reutili.pdf
Restricted to Registered users only

Download (261kB) | Request a copy

Abstract

Sludges generated from electroplating waste-waters contain high concentrations of metals. Studies have confirmed that the concentrations of several metals in the sludge exceed that of those found in natural ores. A very good example is in the case of copper. The natural copper ore contains less than 1 of copper, whereas copper precipitate sludges from the electroplating industry may have an average of 5-10 of copper. Thus, they are one of the largest sources of untapped metal-bearing secondary materials amenable to metals recovery. In Malaysia, most of these metal-bearing sludges are disposed in specially engineering landfills, as many of them do not have the proper incentives and recovery technology. Very less metal recovery is being carried out, and there seems to be a huge waste in these valuable metal resources. With regards to that, an experimental study was carried out to develop and optimise a method of copper recovery from metal hydroxide sludges. Sludge samples containing high concentrations of copper were obtained from a local electroplating plant for the study. A procedure based upon mineral acid leaching or solubilisation was carried out. Two different types of acids, hydrochloric acid (HCl) and sulphuric acid (H2SO4) were used to compare the extractability of copper. Experiments were conducted at various acid concentrations and temperatures to determine the maximum amount of copper recoverable. From the results obtained, maximum copper (95) was solubilised using H2SO4 of 10 M at temperature 110 degrees C, for a leaching period of 4 h. These copper concentrated solutions were then heated and crystallised to form CuSO4 crystals. These crystals were then washed with water and purified. They can be then further treated and reutilised in the metallurgical industry. This study introduces a sustainable method of utilising an electroplating sludge containing valuable metals.

Item Type: Article
Funders: UNSPECIFIED
Uncontrolled Keywords: Heavy metals electroplating sludge acid dissolution sulphuric acid hydrochloric acid copper recycling
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering
Depositing User: Mr. Mohammed Salim Abd Rahman
Date Deposited: 16 Jan 2013 02:14
Last Modified: 06 Dec 2019 07:38
URI: http://eprints.um.edu.my/id/eprint/4517

Actions (login required)

View Item View Item