Enhancement of ductility characteristics of fiber-reinforced ternary geopolymer mortar

Gaddafi, Adel Kassem Farag and Alengaram, U. Johnson and Bunnori, Norazura Muhamad and Ibrahim, Muhammad Shazril Idris and Ibrahim, Shaliza and Govindasami, S. (2024) Enhancement of ductility characteristics of fiber-reinforced ternary geopolymer mortar. Journal of Building Engineering, 82. ISSN 2352-7102, DOI https://doi.org/10.1016/j.jobe.2023.108141.

Full text not available from this repository.
Official URL: https://doi.org/10.1016/j.jobe.2023.108141

Abstract

There is a need for ambient-cured geopolymer as a potential replacement for conventional ordinary Portland cement (OPC) based concrete. But geopolymers, that belong to the ceramic family, behave in a brittle manner and hence this research focusses on the enhancement of ductility using fibers. Thus, this experimental work was conducted to investigate the performance of polypropylene (PP) and micro steel fiber (MS) of fiber-reinforced geopolymer mortar (FRGM) on the hardened properties. The volume fractions of fiber used were 0%, 0.5%, 1%, and 1.5%. The ternary blended geopolymer mortar consisted of fly ash (FA), ground granular blast furnace slag (GGBS), and palm oil fuel ash (POFA). The hardened properties investigated are compressive strength, splitting tensile strength, modulus of elasticity (MoE), and ultrasonic pulse velocity (UPV). Furthermore, the load-deflection response was investigated in terms of deflection, load, flexural, and toughening mechanisms. The morphology of matrix mortar with the bonding of the fibers was examined through field emission scanning electron microscope (FESEM). The results revealed that the splitting tensile strength was enhanced with the inclusion of 0.5% of PP fibers and up to 1.5% of MS fibers by 27% and 177%, respectively. The enhancements in the ultimate flexural strength with 1.5% fiber were found 173% and 33% higher for MS and PP fibers, respectively compared to the control mixes. The inclusion of both MS and PP fibers showed a significant enhancement in the post-cracking flexural and toughness energy measured at L/150 mm. Furthermore, the addition of fiber volume of 0.5-1.5% enhanced the toughness by 33% (T600), 62% (T150), and 28% (T600), 46% (T150) for MS and PP mixes, respectively.

Item Type: Article
Funders: Ministry of Energy, Science, Technology, Environment and Climate Change (MESTECC), Malaysia [MOSTI-Ted01], Ministry of Energy, Science, Technology, Environment and Climate Change (MESTECC), Malaysia [TDF05211386]
Uncontrolled Keywords: Geopolymer; Micro steel fiber; Polypropylene fiber; Load-deflection capacity; Splitting tensile strength; Flexural toughness
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TH Building construction
Divisions: Faculty of Engineering > Department of Civil Engineering
Deputy Vice Chancellor (Research & Innovation) Office > Institute of Ocean and Earth Sciences
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 01 Jul 2024 04:07
Last Modified: 01 Jul 2024 04:07
URI: http://eprints.um.edu.my/id/eprint/44282

Actions (login required)

View Item View Item