Application of TOPSIS and VIKOR improved versions in a multi criteria decision analysis to develop an optimized municipal solid waste management model

Aghajani Mir, M. and Taherei Ghazvinei, P. and Sulaiman, N.M.N. and Basri, N.E.A. and Saheri, S. and Mahmood, N.Z. and Jahan, A. and Begum, R.A. and Aghamohammadi, N. (2016) Application of TOPSIS and VIKOR improved versions in a multi criteria decision analysis to develop an optimized municipal solid waste management model. Journal of Environmental Management, 166. pp. 109-115. ISSN 0301-4797, DOI https://doi.org/10.1016/j.jenvman.2015.09.028.

Full text not available from this repository.
Official URL: http://dx.doi.org/10.1016/j.jenvman.2015.09.028

Abstract

Selecting a suitable Multi Criteria Decision Making (MCDM) method is a crucial stage to establish a Solid Waste Management (SWM) system. Main objective of the current study is to demonstrate and evaluate a proposed method using Multiple Criteria Decision Making methods (MCDM). An improved version of Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) applied to obtain the best municipal solid waste management method by comparing and ranking the scenarios. Applying this method in order to rank treatment methods is introduced as one contribution of the study. Besides, Viekriterijumsko Kompromisno Rangiranje (VIKOR) compromise solution method applied for sensitivity analyses. The proposed method can assist urban decision makers in prioritizing and selecting an optimized Municipal Solid Waste (MSW) treatment system. Besides, a logical and systematic scientific method was proposed to guide an appropriate decision-making.A modified TOPSIS methodology as a superior to existing methods for first time was applied for MSW problems. Applying this method in order to rank treatment methods is introduced as one contribution of the study. Next, 11 scenarios of MSW treatment methods are defined and compared environmentally and economically based on the waste management conditions. Results show that integrating a sanitary landfill (18.1%), RDF (3.1%), composting (2%), anaerobic digestion (40.4%), and recycling (36.4%) was an optimized model of integrated waste management. An applied decision-making structure provides the opportunity for optimum decision-making. Therefore, the mix of recycling and anaerobic digestion and a sanitary landfill with Electricity Production (EP) are the preferred options for MSW management.

Item Type: Article
Funders: National University of Malaysia: AP-2012-007 and DLP-2013-019
Uncontrolled Keywords: Solid waste management; Multi criteria decision making; Global warming; TOPSIS; VIKOR
Subjects: Q Science > QH Natural history > QH301 Biology
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 24 Oct 2017 03:50
Last Modified: 24 Oct 2017 03:50
URI: http://eprints.um.edu.my/id/eprint/18085

Actions (login required)

View Item View Item