Thermophysical properties of methanol based Al2O3 nanofluids

Mostafizur, R.M. and Saidur, Rahman and Abdul Raman, Abdul Aziz and Bhuiyan, M.H.U. (2015) Thermophysical properties of methanol based Al2O3 nanofluids. International Journal of Heat and Mass Transfer, 85. pp. 414-419. ISSN 0017-9310, DOI https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.075.

[img]
Preview
PDF (Thermophysical properties of methanol based Al2O3 nanofluids)
Thermophysical_properties_of_methanol_based_Al2O3_nanofluids.pdf - Published Version

Download (1MB)
Official URL: http://www.sciencedirect.com/science/article/pii/S...

Abstract

In this study, different volume concentrations (0.05, 0.10, 0.15, 0.20 and 0.25 vol) of cylindrical shaped Al2O3 nanopartides (50 nm length and 8 nm diameter) were suspended in methanol to produce methanol based nanofluid (MBNF). The nanofluid was prepared by using an ultrasonic homogenizer without any surfactants. Thermal conductivity (k), viscosity (mu) density (rho) and specific heat (C-p) of the nanofluid were measured for a wide range of temperatures (5, 10, 15, 20 and 25 degrees C). The k values in the range of 0.207-0.234 W/mK, mu values in the range of 0.70-0.94 mPas, rho values in the range of 791-814 kg/m(3) and C-p values in the range of 1.024-1.416 J/g degrees C were observed as the volume concentration increased from 0.05 to 0.25 vol with the temperature rising from 5 to 25 degrees C. The results showed that thermal conductivity, viscosity and density increased while specific heat decreased with increase in Al2O3 particle concentration. Besides, thermal conductivity and specific heat increased while viscosity and density decreased with increase in temperature. (C) 2015 Elsevier Ltd. All rights reserved.

Item Type: Article
Funders: Ministry of Education Malaysia UM.C/625/1/HIR/MoE/ENG/40
Additional Information: ISI Document Delivery No.: CG4IO Times Cited: 0 Cited Reference Count: 31 Cited References: Chandrasekar M, 2010, EXP THERM FLUID SCI, V34, P210, DOI 10.1016/j.expthermflusci.2009.10.022 Choi S. U., 1995, ENHANCING THERMAL CO Firouzfar E, 2011, APPL THERM ENG, V31, P1543, DOI 10.1016/j.applthermaleng.2011.01.029 He QB, 2012, ENERG CONVERS MANAGE, V64, P199, DOI 10.1016/j.enconman.2012.04.010 Jang SP, 2004, APPL PHYS LETT, V84, P4316, DOI 10.1063/1.1756684 Jiang LQ, 2003, J COLLOID INTERF SCI, V260, P89, DOI 10.1016/S0021-9797(02)00176-5 Kole M, 2011, INT J THERM SCI, V50, P1741, DOI 10.1016/j.ijthermalsci.2011.03.027 Lee JW, 2011, INT J REFRIG, V34, P1727, DOI 10.1016/j.ijrefrig.2011.08.002 Li YJ, 2009, POWDER TECHNOL, V196, P89, DOI 10.1016/j.powtec.2009.07.025 Mahbubul IM, 2012, INT J HEAT MASS TRAN, V55, P874, DOI 10.1016/j.ijheatmasstransfer.2011.10.021 Mostafizur RM, 2014, INT J HEAT MASS TRAN, V76, P350, DOI 10.1016/j.ijheatmasstransfer.2014.04.040 Nguyen CT, 2007, INT J HEAT FLUID FL, V28, P1492, DOI 10.1016/j.ijheatfluidflow.2007.02.004 Nguyen CT, 2008, INT J THERM SCI, V47, P103, DOI 10.1016/j.ijthermalsci.2007.01.033 Ozerinc S, 2010, MICROFLUID NANOFLUID, V8, P145, DOI 10.1007/s10404-009-0524-4 Pak BC, 1998, EXP HEAT TRANSFER, V11, P151, DOI 10.1080/08916159808946559 Pang C, 2012, INT J HEAT MASS TRAN, V55, P5597, DOI 10.1016/j.ijheatmasstransfer.2012.05.048 Pang CW, 2013, INT J HEAT MASS TRAN, V56, P94, DOI 10.1016/j.ijheatmasstransfer.2012.09.031 Philip J, 2012, ADV COLLOID INTERFAC, V183, P30, DOI 10.1016/j.cis.2012.08.001 Pineda IT, 2012, INT J REFRIG, V35, P1402, DOI 10.1016/j.ijrefrig.2012.03.017 Pineda IT, 2014, INT J GREENH GAS CON, V23, P105, DOI 10.1016/j.ijggc.2014.02.008 Saidur R, 2011, RENEW SUST ENERG REV, V15, P1646, DOI 10.1016/j.rser.2010.11.035 Sommers AD, 2010, J NANOPART RES, V12, P1003, DOI 10.1007/s11051-009-9657-3 Teng T.-P., 2012, J EXP NANOSCI, V9, P707 Timofeeva EV, 2009, J APPL PHYS, V106, DOI 10.1063/1.3155999 Vajjha RS, 2009, J HEAT TRANS-T ASME, V131, DOI 10.1115/1.3090813 Vasiliev LL, 1998, APPL THERM ENG, V18, P507, DOI 10.1016/S1359-4311(97)00005-7 Wang XQ, 2007, INT J THERM SCI, V46, P1, DOI 10.1016/j.ijthermalsci.2006.06.010 Wang XW, 1999, J THERMOPHYS HEAT TR, V13, P474, DOI 10.2514/2.6486 Xuan YM, 2000, INT J HEAT MASS TRAN, V43, P3701, DOI 10.1016/S0017-9310(99)00369-5 Yang X, 2012, APPL THERM ENG, V33-34, P1, DOI 10.1016/j.applthermaleng.2011.09.006 Zhang X, 2007, EXP THERM FLUID SCI, V31, P593, DOI 10.1016/j.expthermflusci.2006.06.009 Mostafizur, R. M. Saidur, R. Aziz, A. R. Abdul Bhuiyan, M. H. U. Bhuiyan, Mohammed/I-9806-2014; Engineering, Faculty /I-7935-2015 Bhuiyan, Mohammed/0000-0002-4586-9311; Engineering, Faculty /0000-0002-4848-7052 Ministry of Education Malaysia UM.C/625/1/HIR/MoE/ENG/40 "This research is supported by High Impact Research MoE Grant UM.C/625/1/HIR/MoE/ENG/40 from the Ministry of Education Malaysia". 0 PERGAMON-ELSEVIER SCIENCE LTD OXFORD INT J HEAT MASS TRAN
Uncontrolled Keywords: Nanofluid, volume concentration, thermal conductivity, viscosity, density, specific heat, enhanced thermal-conductivity, of-the-art, heat-transfer, viscosity data, nanoparticles, temperature, hysteresis, absorption, ch3oh,
Subjects: T Technology > T Technology (General)
T Technology > TJ Mechanical engineering and machinery
T Technology > TP Chemical technology
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 20 Apr 2016 02:34
Last Modified: 06 Dec 2019 08:00
URI: http://eprints.um.edu.my/id/eprint/15803

Actions (login required)

View Item View Item