Investigation on the use of graphene oxide as novel surfactant to stabilize weakly charged graphene nanoplatelets

Kazi, S.N. and Badarudin, A. and Zubir, M.N.M. and Ming, H.N. and Misran, M. and Sadeghinezhad, E. and Mehrali, M. and Syuhada, N.I. (2015) Investigation on the use of graphene oxide as novel surfactant to stabilize weakly charged graphene nanoplatelets. Nanoscale Research Letters, 10. p. 15. ISSN 1931-7573, DOI https://doi.org/10.1186/s11671-015-0882-7.

[img]
Preview
PDF (Investigation on the use of graphene oxide as novel surfactant to stabilize weakly charged graphene nanoplatelets)
Investigation_on_the_use_of_graphene_oxide_as_novel_surfactant.pdf - Published Version

Download (3MB)
Official URL: http://www.ncbi.nlm.nih.gov/pubmed/25995712

Abstract

This paper presents a unique synergistic behavior between a graphene oxide (GO) and graphene nanoplatelet (GnP) composite in an aqueous medium. The results showed that GO stabilized GnP colloid near its isoelectric point and prevented rapid agglomeration and sedimentation. It was considered that a rarely encountered charge-dependent electrostatic interaction between the highly charged GO and weakly charged GnP particles kept GnP suspended at its rapid coagulation and phase separation pH. Sedimentation and transmission electron microscope (TEM) micrograph images revealed the evidence of highly stable colloidal mixtures while zeta potential measurement provided semi-quantitative explanation on the mechanism of stabilization. GnP suspension was confirmed via UV-vis spectral data while contact angle measurement elucidated the close resemblance to an aqueous solution indicating the ability of GO to mediate the flocculation prone GnP colloids. About a tenfold increase in viscosity was recorded at a low shear rate in comparison to an individual GO solution due to a strong interaction manifested between participating colloids. An optimum level of mixing ratio between the two constituents was also obtained. These new findings related to an interaction between charge-based graphitic carbon materials would open new avenues for further exploration on the enhancement of both GO and GnP functionalities particularly in mechanical and electrical domains.

Item Type: Article
Funders: High Impact Research (MOHE-HIR) grant UM.C/625/1/HIR/MOHE/ENG/45, IPPP grant PV113/2011A
Additional Information: ISI Document Delivery No.: CI4KI Times Cited: 0 Cited Reference Count: 113 Cited References: Aboutalebi SH, 2011, ENERG ENVIRON SCI, V4, P1855, DOI 10.1039/c1ee01039e Acik M, 2010, NAT MATER, V9, P840, DOI 10.1038/nmat2858, 10.1038/NMAT2858 Anonymous, 2004, Characterization of xGnP® Grade C Materials, Patent No. 20040127621 Anonymous, D418782 ASTM INT Aria AI, 2011, LANGMUIR, V27, P9005, DOI 10.1021/la201841m Baby TT, 2011, NANOSCALE RES LETT, V6, P1 Balandin AA, 2008, NANO LETT, V8, P902, DOI 10.1021/nl0731872 Balasubramanian K, 2005, SMALL, V1, P180, DOI 10.1002/smll.200400118 Biswas S., 2008, NANO LETT, V9, P167, DOI DOI 10.1021/NL802724F Biswas S, 2011, COMPOS PART A-APPL S, V42, P371, DOI 10.1016/j.compositesa.2010.12.006 Brodie BC, 1859, PHILOS T R SOC LONDO, V149, P249, DOI DOI 10.1098/RSTL.1859.0013 Chan AT, 2005, LANGMUIR, V21, P8576, DOI 10.1021/la0510073 Chan AT, 2008, LANGMUIR, V24, P11399, DOI 10.1021/la800422g Chen J, 1998, SCIENCE, V282, P95, DOI 10.1126/science.282.5386.95 Chen RJ, 2003, P NATL ACAD SCI USA, V100, P4984, DOI 10.1073/pnas.0837064100 Cheng M, 2012, CARBON, V50, P2581, DOI 10.1016/j.carbon.2012.02.016 CHUNG DDL, 1987, J MATER SCI, V22, P4190, DOI 10.1007/BF01132008 Cote L. J., 2010, PURE APPL CHEM, V83, P95 Dikin DA, 2007, NATURE, V448, P457, DOI 10.1038/nature06016 Do I-H, 2006, THESIS MICHIGAN STAT Dreyer DR, 2010, CHEM SOC REV, V39, P228, DOI 10.1039/b917103g Drzal LT, 2006, P NSTI NAN C TRAD SH Erickson K, 2010, ADV MATER, V22, P4467, DOI 10.1002/adma.201000732 Fukushima H, 2006, J THERM ANAL CALORIM, V85, P235, DOI 10.1007/s10973-005-7344-x Fukushima H, 2003, GRAPHITE NANOREINFOR Fukushima H, 2006, NSTI NANOTECH Gurunathan S, 2013, NANOSCALE RES LETT, V8, P1 Han D., 2011, NANOSCALE RES LETT, V6, P1 Han PX, 2011, ENERG ENVIRON SCI, V4, P4710, DOI 10.1039/c1ee01776d Hendricks TR, 2008, ADV MATER, V20, P2008, DOI 10.1002/adma.200702672 Herman D, 2013, LANGMUIR, V29, P5982, DOI 10.1021/la400699g Hsiao AE, 2012, NANOSCALE RES LETT, V7, P1, DOI 10.1186/1556-276X-7-240 Huang HH, 2013, J PHYS CHEM B, V117, P6318, DOI 10.1021/jp401889m Huang NM, 2011, INT J NANOMED, V6, P3443, DOI 10.2147/IJN.S26812 HUMMERS WS, 1958, J AM CHEM SOC, V80, P1339, DOI 10.1021/ja01539a017 Hwang SH, 2013, SMART MATER STRUCT, V22, DOI 10.1088/0964-1726/22/1/015013 Jeon J, 2012, SOL ENERG MAT SOL C, V101, P51, DOI 10.1016/j.solmat.2012.02.028 Ji SX, 2012, COLLOID SURFACE A, V396, P51, DOI 10.1016/j.colsurfa.2011.12.040 Jiang HJ, 2011, SMALL, V7, P2413, DOI 10.1002/smll.201002352 Kalaitzidou K, 2006, MULTIFUNCTIONAL NANO Kalaitzidou K, 2007, CARBON, V45, P1446, DOI 10.1016/j.carbon.2007.03.029 Karimian H, 2007, J EUR CERAM SOC, V27, P19, DOI 10.1016/j.jeurceramsoc.2006.05.109 Kaszuba M, 2010, PHILOS T R SOC A, V368, P4439, DOI 10.1098/rsta.2010.0175 Kavan L, 2011, ACS NANO, V5, P165, DOI 10.1021/nn102353h Kim J, 2011, ADV ENERGY MATER, V1, P1052, DOI 10.1002/aenm.201100466 Kim J, 2010, J AM CHEM SOC, V132, P8180, DOI 10.1021/ja102777p Kim KH, 2013, SCI REP-UK, V3, DOI 10.1038/srep03251 Kim S, 2009, J ADHES SCI TECHNOL, V23, P1623, DOI 10.1163/156856109X440984 Kim YK, 2010, CARBON, V48, P4283, DOI 10.1016/j.carbon.2010.07.039 Kong DY, 2004, MATER LETT, V58, P3503, DOI 10.1016/j.matlet.2004.06.060 Kopelevich Y, 2007, ADV MATER, V19, P4559, DOI 10.1002/adma.200702051 Kudin KN, 2008, NANO LETT, V8, P36, DOI 10.1021/nl071822y Lee S, 2005, J MATER SCI, V40, P231, DOI 10.1007/s10853-005-5715-0 Leng Y, 1998, CARBON, V36, P875, DOI 10.1016/S0008-6223(97)00196-6 Li D, 2008, NAT NANOTECHNOL, V3, P101, DOI 10.1038/nnano.2007.451 Lim HN, 2011, INT J NANOMED, V6, P1817, DOI 10.2147/IJN.S23392 Liu M, 2011, NANOSCALE RES LETT, V6, P1 Lu J, 2007, CHEM MATER, V19, P6240, DOI 10.1021/cm702133u Lu J, 2010, J NANOMATER, V2010, P2 Lu XK, 1999, NANOTECHNOLOGY, V10, P269, DOI 10.1088/0957-4484/10/3/308 Luo JY, 2010, J AM CHEM SOC, V132, P17667, DOI 10.1021/ja1078943 Luo SX, 2013, IONICS, V19, P673, DOI 10.1007/s11581-013-0868-3 Mani V, 2012, INT J ELECTROCHEM SC, V7, P12774 Mani V, 2013, BIOSENS BIOELECTRON, V41, P309, DOI 10.1016/j.bios.2012.08.045 Mani V, 2013, INT J ELECTROCHEM SC, V8, P11641 Marcano DC, 2010, ACS NANO, V4, P4806, DOI 10.1021/nn1006368 Mckee CT, 2012, J COLLOID INTERF SCI, V365, P72, DOI 10.1016/j.jcis.2011.09.015 Mehrali M, 2013, ENERG CONVERS MANAGE, V67, P275, DOI 10.1016/j.enconman.2012.11.023 Mehrali M, 2014, NANOSCALE RES LETT, V9, DOI 10.1186/1556-276X-9-15 Mickelson ET, 1999, J PHYS CHEM B, V103, P4318, DOI 10.1021/jp9845524 Moore VC, 2003, NANO LETT, V3, P1379, DOI 10.1021/nl034524j Mu Xin, 2014, Sci Rep, V4, P3909, DOI 10.1038/srep03909 Muthoosamy K, 2014, CURR DRUG DELIV, V11, P701 Novoselov KS, 2005, NATURE, V438, P197, DOI 10.1038/nature04233 Novoselov KS, 2012, NATURE, V490, P192, DOI 10.1038/nature11458 Novoselov KS, 2004, SCIENCE, V306, P666, DOI 10.1126/science.1102896 Park H-M, 2007, EXFOLIATED GRAPHITE Park S, 2009, NANO LETT, V9, P1593, DOI 10.1021/nl803798y Pei SF, 2010, CARBON, V48, P4466, DOI 10.1016/j.carbon.2010.08.006 Qiu L, 2010, CHEM-EUR J, V16, P10653, DOI 10.1002/chem.201001771 Roghani-Mamaqani H, 2014, RSC ADV Ruan BL, 2012, NANOSCALE RES LETT, V7, P1, DOI 10.1186/1556-276X-7-127 Sadeghinezhad E, 2014, IND ENG CHEM RES, V53, P12455, DOI 10.1021/ie501947u Sadri R, 2014, NANOSCALE RES LETT, V9, DOI 10.1186/1556-276X-9-151 Sanchez VC, 2011, CHEM RES TOXICOL, V25, P15, DOI DOI 10.1021/TX200339H Si Y, 2008, NANO LETT, V8, P1679, DOI 10.1021/nl080604h Stankovich S, 2007, CARBON, V45, P1558, DOI 10.1016/j.carbon.2007.02.034 Staudenmaier L., 1898, BER DTSCH CHEM GES, V31, P1481, DOI DOI 10.1002/CBER.18980310237 Stoller MD, 2008, NANO LETT, V8, P3498, DOI 10.1021/nl802558y Szabo T, 2006, CHEM MATER, V18, P2740, DOI 10.1021/cm060258 Tohver V, 2001, P NATL ACAD SCI USA, V98, P8950, DOI 10.1073/pnas.151063098 Tohver V, 2001, LANGMUIR, V17, P8414, DOI 10.1021/la011252w TUINSTRA F, 1970, J CHEM PHYS, V53, P1126, DOI 10.1063/1.1674108 Tung VC, 2012, ENERG ENVIRON SCI, V5, P7810, DOI 10.1039/c2ee21587j Tung VC, 2011, J AM CHEM SOC, V133, P4940, DOI 10.1021/ja1103734 Vaisman L, 2006, ADV COLLOID INTERFAC, V128, P37, DOI 10.1016/j.cis.2006.11.007 Verweys E. J. W., 1948, THEORY STABILITY LYO Wang F., 2012, NANOSCALE RES LETT, V7, P1 Wang HL, 2009, J AM CHEM SOC, V131, P9910, DOI 10.1021/ja904251p Wang L, 2009, ACS NANO, V3, P2995, DOI 10.1021/nn900667s Wang Y, 2011, TRENDS BIOTECHNOL, V29, P205, DOI 10.1016/j.tibtech.2011.01.008 WOLF EL, 2014, PRACTICAL PRODUCTION, P19 Xiang JL, 2011, CARBON, V49, P773, DOI 10.1016/j.carbon.2010.10.003 Xiang JL, 2011, SOL ENERG MAT SOL C, V95, P1811, DOI 10.1016/j.solmat.2011.01.048 Xie HQ, 2011, NANOSCALE RES LETT, V6, DOI 10.1186/1556-276X-6-124 Xing XC, 2012, LANGMUIR, V28, P16022, DOI 10.1021/la303547m Yang D, 2009, CARBON, V47, P145, DOI 10.1016/j.carbon.2008.09.045 Zhang C, 2010, J PHYS CHEM C, V114, P11435, DOI 10.1021/jp103745g Zhang LL, 2010, ACS NANO, V4, P7030, DOI 10.1021/nn102308r Zhang W, 2011, NANOSCALE RES LETT, V6, P1 Zhao W, 2002, J AM CHEM SOC, V124, P12418, DOI 10.1021/ja027861n Zheng M, 2003, NAT MATER, V2, P338, DOI 10.1038/nmat877 Zhu J, 2004, J PHYS CHEM B, V108, P11317, DOI 10.1021/jp0494032 Kazi, Salim Newaz Badarudin, Ahmad Zubir, Mohd Nashrul Mohd Ming, Huang Nay Misran, Misni Sadeghinezhad, Emad Mehrali, Mohammad Syuhada, Nur Ily Huang, NM/C-2423-2009; Engineering, Faculty /I-7935-2015 Engineering, Faculty /0000-0002-4848-7052 High Impact Research (MOHE-HIR) grant UM.C/625/1/HIR/MOHE/ENG/45; IPPP grant PV113/2011A This research work has been supported by High Impact Research (MOHE-HIR) grant UM.C/625/1/HIR/MOHE/ENG/45 and IPPP grant PV113/2011A. The authors would like to thank members of Low Dimensional Materials Research Centre, Department of Physics and Colloid and Surface Science Lab, Department of Chemistry, Faculty of Science, University of Malaya for the continuous support and assistance. 0 SPRINGER NEW YORK NANOSCALE RES LETT
Uncontrolled Keywords: Graphene oxide, Graphene nanoplatelets, Weakly charged colloids, Isoelectric point, Hybrid complexes, Electrostatic stabilization, WALLED CARBON NANOTUBES, EXFOLIATED GRAPHITE NANOPLATELETS, THERMAL-CONDUCTIVITY, COLLOIDAL SUSPENSIONS, NANOPARTICLE MIXTURES, ASSISTED DISPERSION, MODIFIED ELECTRODE, GLUCOSE BIOSENSOR, SOLAR-CELLS, COMPOSITE,
Subjects: T Technology > T Technology (General)
T Technology > TJ Mechanical engineering and machinery
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 14 Apr 2016 01:16
Last Modified: 30 Aug 2019 08:12
URI: http://eprints.um.edu.my/id/eprint/15708

Actions (login required)

View Item View Item