Experimental investigation on the use of highly charged nanoparticles to improve the stability of weakly charged colloidal system

Zubir, M.N.M. and Badarudin, A. and Kazi, S.N. and Misran, M. and Amiri, A. and Sadri, R. and Khalid, S. (2015) Experimental investigation on the use of highly charged nanoparticles to improve the stability of weakly charged colloidal system. Journal of Colloid and Interface Science, 454. pp. 245-255. ISSN 0021-9797, DOI https://doi.org/10.1016/j.jcis.2015.05.019.

[img]
Preview
PDF (Experimental investigation on the use of highly charged nanoparticles to improve the stability of weakly charged colloidal system)
Experimental_investigation_on_the_use_of_highly_charged_nanoparticles_to_improve_the_stability.pdf - Published Version

Download (2MB)
Official URL: http://www.sciencedirect.com/science/article/pii/S...

Abstract

The present work highlighted on the implementation of a unique concept for stabilizing colloids at their incipiently low charge potential. A highly charged nanoparticle was introduced within a coagulated prone colloidal system, serving as stabilizer to resist otherwise rapid flocculation and sedimentation process. A low size asymmetry of nanoparticle/colloid serves as the new topic of investigation in addition to the well-established large size ratio nanoparticle/microparticle study. Highly charged Al2O3 nanoparticles were used within the present research context to stabilize TiO2 and Fe3O4 based colloids via the formation of composite structures. It was believed, based on the experimental evidence, that Al2O3 nanoparticle interact with the weakly charged TiO2 and Fe3O4 colloids within the binary system via absorption and/or haloing modes to increase the overall charge potential of the respective colloids, thus preventing further surface contact via van der Waal's attraction. Series of experimental results strongly suggest the presence of weakly charged colloids in the studied bimodal system where, in the absence of highly charged nanoparticle, experience rapid instability. Absorbance measurement indicated that the colloidal stability drops in accordance to the highly charged nanoparticle sedimentation rate, suggesting the dominant influence of nanoparticles to attain a well-dispersed binary system. Further, it was found that the level of colloidal stability was enhanced with increasing nanoparticle fraction within the mixture. Rheological observation revealed that each hybrid complexes demonstrated behavior reminiscence to water with negligible increase in viscosity which serves as highly favorable condition particularly in thermal transport applications. (C) 2015 Elsevier Inc. All rights reserved.

Item Type: Article
Funders: High Impact Research (MOHE-HIR) Grant UM.C/625/1/HIR/MOHE/ENG/46, IPPP Grant PV113/2011A, UMRG Grant RP012A-13AET
Additional Information: ISI Document Delivery No.: CL5JR Times Cited: 0 Cited Reference Count: 65 Cited References: Al-Mamun SA, 2013, J COLLOID INTERF SCI, V392, P172, DOI 10.1016/j.jcis.2012.10.027 Amiri A, 2012, J PHYS CHEM C, V116, P3369, DOI 10.1021/jp210484a Barr SA, 2006, LANGMUIR, V22, P7152, DOI 10.1021/la061291d Binks BP, 2008, LANGMUIR, V24, P4443, DOI 10.1021/la800084d Caruso F, 2001, ADV MATER, V13, P11, DOI 10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N Chan AT, 2005, LANGMUIR, V21, P8576, DOI 10.1021/la0510073 Chan AT, 2008, LANGMUIR, V24, P11399, DOI 10.1021/la800422g Chang H, 2009, MATER TRANS, V50, P2098, DOI 10.2320/matertrans.M2009129 Chang YI, 2011, SEP PURIF TECHNOL, V79, P393, DOI 10.1016/j.seppur.2011.03.028 Chavez-Paez M, 2004, PHYSICA A, V341, P1, DOI 10.1016/j.physa.2004.03.063 Chevalier Y, 2013, COLLOID SURFACE A, V439, P23, DOI 10.1016/j.colsurfa.2013.02.054 Evans D. F., 1999, COLLOIDAL DOMAIN PHY, V2nd Feynman R. P, 1960, ENG SCI, V23, P22 Gowda R., 2010, ADV MECH ENG, P2010 Han ZH, 2007, NANOTECHNOLOGY, V18, DOI 10.1088/0957-4484/18/10/105701 Herman D, 2013, LANGMUIR, V29, P5982, DOI 10.1021/la400699g Ho CJ, 2010, INT COMMUN HEAT MASS, V37, P490, DOI 10.1016/j.icheatmasstransfer.2009.12.007 HOMOLA AM, 1986, IEEE T MAGN, V22, P716, DOI 10.1109/TMAG.1986.1064535 Hong HP, 2007, SYNTHETIC MET, V157, P437, DOI 10.1016/j.synthmet.2007.05.009 Hong XT, 2009, LANGMUIR, V25, P4929, DOI 10.1021/la804103g Huang HH, 2013, COLLOID SURFACE A, V436, P862, DOI 10.1016/j.colsurfa.2013.08.024 Hunter R. J., 2001, FDN COLLOID SCI Israelachvili JN, 2011, INTERMOLECULAR AND SURFACE FORCES, 3RD EDITION, P1 Ji SX, 2013, J COLLOID INTERF SCI, V394, P611, DOI 10.1016/j.jcis.2012.11.040 Kalsin AM, 2006, SCIENCE, V312, P420, DOI 10.1126/science.1125124 Karanikas S, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.248303 Karimian H, 2012, J DISPER SCI TECHNOL, V33, P457, DOI 10.1080/01932691.2010.548261 Karimian H, 2007, J EUR CERAM SOC, V27, P19, DOI 10.1016/j.jeurceramsoc.2006.05.109 Keller AA, 2010, ENVIRON SCI TECHNOL, V44, P1962, DOI 10.1021/es902987d Khaliq A, 2010, NANOTECHNOLOGY, V21, DOI 10.1088/0957-4484/21/25/255704 Kong DY, 2004, MATER LETT, V58, P3503, DOI 10.1016/j.matlet.2004.06.060 Lee W, 2004, LANGMUIR, V20, P5262, DOI 10.1021/la035694e Lewis J, 2003, J HELMINTHOL, V77, P91, DOI 10.1079/JOH2003171 Liu J, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.061401 Liu JW, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.247802 Martinez CJ, 2005, LANGMUIR, V21, P9978, DOI 10.1021/la050382s Mckee CT, 2012, J COLLOID INTERF SCI, V365, P72, DOI 10.1016/j.jcis.2011.09.015 Prevo BG, 2004, LANGMUIR, V20, P2099, DOI 10.1021/la035295j Rhodes SK, 2006, J AM CERAM SOC, V89, P1840, DOI 10.1111/j.1551-2916.2006.01014.x Saleh N, 2005, LANGMUIR, V21, P9873, DOI 10.1021/la050654r Savarala S, 2011, ACS NANO, V5, P2619, DOI 10.1021/nn1025884 Schroeder U, 1998, J PHARM SCI, V87, P1305, DOI 10.1021/js980084y Tajik B, 2012, POWDER TECHNOL, V217, P171, DOI 10.1016/j.powtec.2011.10.024 Tang FQ, 2002, MATER RES BULL, V37, P653 Tian Z, 2014, LANGMUIR, V30, P12411, DOI 10.1021/la502984u Tian Z, 2014, LANGMUIR, V30, P9828, DOI 10.1021/la501870h Timofeeva EV, 2009, J APPL PHYS, V106, DOI 10.1063/1.3155999 Tohver V, 2001, P NATL ACAD SCI USA, V98, P8950, DOI 10.1073/pnas.151063098 Tohver V, 2001, LANGMUIR, V17, P8414, DOI 10.1021/la011252w Trulsson M, 2013, PHYS CHEM CHEM PHYS, V15, P541, DOI 10.1039/c2cp42404e Wen DS, 2005, INT J HEAT FLUID FL, V26, P855, DOI 10.1016/j.ijheatfluidflow.2005.10.005 Wensel J, 2008, APPL PHYS LETT, V92, DOI 10.1063/1.2834370 Xing XC, 2012, LANGMUIR, V28, P16022, DOI 10.1021/la303547m Xuan YM, 2000, INT J HEAT FLUID FL, V21, P58, DOI 10.1016/S0142-727X(99)00067-3 Yang CQ, 2005, J MATER CHEM, V15, P4252, DOI 10.1039/b505018a Yu H, 2005, NANO LETT, V5, P379, DOI 10.1021/nl047955q Yu JR, 2007, CARBON, V45, P2897, DOI 10.1016/j.carbon.2007.10.005 Yu W, 2010, APPL PHYS LETT, V96, DOI 10.1063/1.3435487 Zardini HZ, 2014, J BIOMED MATER RES A, V102, P1774, DOI 10.1002/jbm.a.34846 Zhang F, 2008, LANGMUIR, V24, P6504, DOI 10.1021/la702968n Zhang H, 2003, THIN SOLID FILMS, V429, P167, DOI 10.1016/S0040-6090(03)00059-2 Zhang LF, 2006, NANO LETT, V6, P694, DOI 10.1021/nl052455y Zhang S, 2010, ANGEW CHEM INT EDIT, V49, P2211, DOI 10.1002/anie.200906987 Zhang Y, 2008, WATER RES, V42, P2204, DOI 10.1016/j.watres.2007.11.036 Zhu J, 2004, J PHYS CHEM B, V108, P11317, DOI 10.1021/jp0494032 Zubir, Mohd Nashrul Mohd Badarudin, A. Kazi, S. N. Misran, Misni Amiri, Ahmad Sadri, Rad Khalid, Solangi Engineering, Faculty /I-7935-2015 Engineering, Faculty /0000-0002-4848-7052 High Impact Research (MOHE-HIR) Grant UM.C/625/1/HIR/MOHE/ENG/46; IPPP Grant PV113/2011A; UMRG Grant RP012A-13AET This research work has been supported by High Impact Research (MOHE-HIR) Grant UM.C/625/1/HIR/MOHE/ENG/46, IPPP Grant PV113/2011A and UMRG Grant RP012A-13AET. The author would like to thank members of Low Dimensional Materials Research Centre (LDMRC), Department of Physics and Colloid and Surface Lab, Department of Chemistry, Faculty of Science, University of Malaya for the continuous support and assistance. 0 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO J COLLOID INTERF SCI
Uncontrolled Keywords: Colloids, Nanoparticle haloing, Weakly charged colloids, Electrostatic, stabilization, Colloidal stability, MULTIWALLED CARBON NANOTUBES, METAL-OXIDE NANOPARTICLES, INTERPARTICLE, INTERACTIONS, STABILIZATION MECHANISM, FE3O4 NANOPARTICLES, HALOS, MECHANISM, PHASE-BEHAVIOR, SUSPENSIONS, WATER, MIXTURES,
Subjects: T Technology > T Technology (General)
T Technology > TJ Mechanical engineering and machinery
T Technology > TP Chemical technology
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 03 Mar 2016 01:09
Last Modified: 03 Mar 2016 01:09
URI: http://eprints.um.edu.my/id/eprint/15660

Actions (login required)

View Item View Item