Visible light improved, photocatalytic activity of magnetically separable titania nanocomposite

Aziz, A.A. and Cheng, C.K. and Ibrahim, S. and Matheswaran, M. and Saravanan, P. (2012) Visible light improved, photocatalytic activity of magnetically separable titania nanocomposite. Chemical Engineering Journal, 183. pp. 349-356. ISSN 13858947

[img]
Preview
PDF (Visible light improved, photocatalytic activity of magnetically separable titania nanocomposite)
Visible_light_improved,_photocatalytic_activity_of_magnetically_separable_titania_nanocomposite.pdf - Other

Download (334kB)
Official URL: http://www.scopus.com/inward/record.url?eid=2-s2.0...

Abstract

A visible light improved, magnetically separable TiO 2 nanocomposite was successfully synthesized with silicon dioxide (SiO 2) as coating and supported on a permanent magnet Viz., nickel ferrite (NiFe 2O 4). Thus synthesized photocatalysts was further characterized for its crystalline phase, particle size, surface morphology, inorganic composition, adsorption-desorption hysteresis, BET surface area, pore size distribution, magnetic hysteresis, saturation magnetization, coercivity, elemental composition, chemical state, electronic state and visible light absorption spectra analysis with respective techniques. The crystallographic peak and inorganic elemental composition revealed the structure and composition of pure and nanocomposite TiO 2. The prepared titania nanocomposite resulted in lower band gap energy (2.26eV) and higher visible light absorption between 400 and 800nm than that of pure TiO 2 (2.76eV). The photocatalytic activity was investigated with a recalcitrant phenolic compound namely 2,4-dichlorophenol (2,4-DCP) as a model pollutant under direct bright and diffused sunlight irradiation. An almost complete degradation of 2,4-DCP was achieved with an initial concentration of 50mg/L for TiO 2 nanocomposite in 90min and 5h under bright and diffused sunlight conditions. Similarly pure TiO 2 resulted in a nearly complete degradation in 180min under bright and �90 in 5h under diffused conditions. Further the TiO 2 nanocomposite was recovered under a magnetic field with a mass recovery �95. The nanocomposite also exhibited improved remanence, saturation magnetization and coercivity property along with good stability against magnetic property losses for reuse. © 2012 Elsevier B.V.

Item Type: Article
Additional Information: Cited By (since 1996):6 Export Date: 13 February 2014 Source: Scopus CODEN: CMEJA Language of Original Document: English Correspondence Address: Saravanan, P.; Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; email: pichiahsaravanan@gmail.com References: Zhang, Y., Crittenden, J.C., Hand, D.W., Perram, D.L., Fixed-bed photocatalysts for solar decontamination of water (1994) Environ. Sci. Technol., 28, pp. 435-442; Hoffmann, M., Martin, S., Choi, W., Bahnemann, D., Environmental applications of semiconductor photocatalysis (1995) Chem. Rev., 95, pp. 69-96; Zhao, J., Wu, T., Wu, K., Oikawa, K., Hidaka, H., Serpone, N., Photoassisted degradation of dye pollutants. 8. Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO 2 dispersions (1998) Environ. Sci. Technol., 32, pp. 2394-2400; Mukherjee, P., Ray, A., Major challenges in the design of a large scale photocatalytic reactor for water treatment (1999) Chem. Eng. Technol., 22, pp. 253-260; Arslan, I., Balcioglu, I.A., Bahnemann, D., Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO 2-photocatalysts (2000) Appl. Catal. B - Environ., 26, pp. 193-206; Sikong, L., Kongreong, B., Kantachote, D., Sutthisripok, W., Photocatalytic activity and antibacterial behavior of Fe 3+ doped TiO 2/SnO 2 nanoparticles (2010) Energy Res. J., 1, pp. 120-125; Beydoun, D., Amal, R., Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst (2002) Mater. Sci. Eng., 94, pp. 71-81; Ao, Y., Xu, J., Fu, D., Shen, X., Yuan, C., A novel magnetically separable composite photocatalyst: titania-coated magnetic activated carbon (2008) Sep. Purif. Technol., 61, pp. 436-441; Xu, S., Shangguan, W., Yuan, J., Chen, M., Shi, J., Preparations and photocatalytic properties of magnetically separable nitrogen-doped TiO 2 supported on nickel ferrite (2007) Appl. Catal. B - Environ., 71, pp. 177-184; Narayana, R.L., Matheswaran, M., Aziz, A.A., Saravanan, P., Photocatalytic decolourization of basic green dye by pure and Fe, Co doped TiO 2 under daylight illumination (2011) Desalination, 269, pp. 249-253; Chung, Y.S., Park, S.B., Kang, D.W., Magnetically separable titania-coated nickel ferrite photocatalyst (2004) Mater. Chem. Phys., 86, pp. 375-381; Chen, F., Xie, Y.D., Zhao, J.C., Lu, G.X., Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation (2001) Chemosphere, 44, pp. 1159-1168; Beydoun, D., Amal, R., Low, G., McEvoy, S., Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide (2002) J. Mol. Catal. A - Chem., 180, pp. 193-200; Kostedt, W.L., Drwiega, J., Mazyck, D.W., Lee, S.W., Sigmund, W., Wu, C.Y., Chadik, P., Magnetically agitated photocatalytic reactor for photocatalytic oxidation of aqueous phase organic pollutants (2005) Environ. Sci. Technol., 39, pp. 8052-8056; Beydoun, D., Amal, R., Low, G., McEvoy, S., Novel photocatalyst: titania-coated magnetite. Activity and photodissolution (2000) J. Phys. Chem. B, 104, pp. 4387-4396; Beydoun, D., Amal, R., Scott, J., Low, G., McEvoy, S., Studies on the mineralization and separation efficiencies of a magnetic photocatalyst (2001) Chem. Eng. Technol., 24, pp. 745-748; Gao, Y., Chen, B.H., Li, H.L., Ma, Y.X., Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties (2003) Mater. Chem. Phys., 80, pp. 348-355; Sellwood, P.W., (1956) Magnetochemistry, , Interscience Publishers Inc., New York; Sato, S., Photocatalytic activity of NO x-doped TiO 2 in the visible light region (1986) Chem. Phys. Lett., 123, pp. 126-128; Nakamura, N., Negishi, S., Kutsuna, T., Ihara, S., Sugihara, K., Takeuchi, J., Role of oxygen vacancy in the plasma-treated TiO 2 photocatalyst with visible light activity for NO removal (2000) J. Mol. Catal. A - Chem., 161, pp. 205-212; Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxide (2001) Science, 293, pp. 269-271; Ihara, T., Miyoshi, M., Iriyama, Y., Matsumoto, O., Sugthara, S., Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping (2001) Appl. Catal. B - Environ., 42, pp. 403-409; Aziz, A.A., Yong, K.S., Ibrahim, S., Pichiah, S., Enhanced magnetic separation and photocatalytic activity of nitrogen doped titania photocatalyst supported on strontium ferrite (2012) J. Hazard. Mater., pp. 143-150; Yu, H.B., Chen, S., Quan, X., Zhao, H.M., Zhang, Y.B., Fabrication of a TiO 2-BDD heterojunction and its application as a photocatalyst for the simultaneous oxidation of an azo dye and reduction of Cr (VI) (2008) Environ. Sci. Technol., 42, pp. 3791-3796; Naeem, K., Ouyang, F., Effect of various additives on photocatalytic degradation of 4-Nitrophenol (2009) E-J. Chem., 6 (SI), pp. S422-S428; Anpo, M., Chiba, K., Tomonari, M., Coluccia, S., Che, M., Fox, M.A., Photocatalysis on native and platinum-loaded TiO 2 and ZnO catalysts-origin of different reactivities on wet and dry metal oxides (1991) Bull. Chem. Soc. Jpn., 64, pp. 543-551; Wang, C., Ao, Y., Wang, P., Hou, J., Qian, J., A facile method for the preparation of titania-coated magnetic porous silica and its photocatalytic activity under UV or visible light (2010) Colloid. Surf. A - Physiochem. Eng. Aspects, 360, pp. 184-189; Zhang, M., Chen, C.C., Ma, W.H., Zhao, J.C., Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO 2 and TEMPO (2008) Angew. Chem. Int. Ed., 47, pp. 9730-9733; Granados-Oliveros, G., Paez-Mozo, E.A., Ortega, F.M., Ferronato, C., Chovelon, J., Degradation of atrazine using metalloporphyrins supported on TiO 2 under visible light irradiation (2009) Appl. Catal. B - Environ., 89, pp. 448-454; Lorret, O., Francova, D., Waldner, G., Stelzer, N., W-doped titania nanoparticles for UV and visible-light photocatalytic reactions (2009) Appl. Catal. B - Environ., 91, pp. 39-46; Zaleska, A., Grabowska, E., Sobezak, J.W., Gazda, M., Hupka, J., Photocatalytic activity of boron-modified TiO 2 under visible light: the effect of boron content, calcination temperature and TiO 2 matrix (2009) Appl. Catal. B - Environ., 89, pp. 469-475; Adan, A., Bahamonde, A., Garcia, M.F., Arias, A.M., Structure and activity of nanosized iron-doped anatase TiO 2 catalysts for phenol photocatalytic degradation (2007) Appl. Catal. B - Environ., 72, pp. 11-17; Kubacka, A., Garcia, M.F., Colon, G., Nanostructured Ti-M mixed-metal oxides: toward a visible light-driven photocatalyst (2008) J. Catal., 254, pp. 272-284; Brian, Z.F., Zhu, J., Wang, S., Cao, Y., Qian, X., Li, H.X., Self-assembly of active Bi 2O 3/TiO 2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase (2008) J. Phys. Chem. C, 112, pp. 6258-6262; Zhao, W., Ma, W.H., Chen, C.C., Zhao, J.C., Shuai, Z.G., Efficient degradation of toxic organic pollutants with Ni 2O 3/TiO 2-xB x under visible irradiation (2004) J. Am. Chem. Soc., 126, pp. 4782-4783; Gao, B.F., Kim, Y.J., Chakraborty, A.K., Lee, W.I., Efficient decomposition of organic compounds with FeTiO 3/TiO 2 heterojunction under visible light irradiation (2008) Appl. Catal. B - Environ., 83, pp. p202; Litter, M.I., Heterogeneous photocatalysis: transition metal ions in photocatalytic systems (1999) Appl. Catal. B - Environ., 23, pp. 89-114; Siemon, U., Bahnemann, D., Testa, J.J., Rodríguez, D., Litter, M.I., Bruno, N., Heterogeneous photocatalytic reaction comparing TiO 2 and Pt/TiO 2 (2002) J. Photochem. Photobiol. A, 148, pp. 247-255; Hufschmidt, D., Bahnemann, D., Testa, J.J., Emilio, C.A., Litter, M.I., Enhancement of the photocatalytic activity of various TiO 2 materials by planitisation (2002) J. Photochem. Photobiol. A, 148, pp. 223-231; Liqiang, J., Baiqi, W., Baifu, X., Shudan, L., Keying, S., Weimin, C., Honggang, F., Investigation on the surface modification of ZnO nanoparticle photocatalyst by depositing Pd (2004) J. Solid State Chem., 177, pp. 4221-4227; Dharma, J., Pisal, A., UV/Vis/NIR Spectrometer, Perkin Elmer Application Notes 1Brus, L., Quantum crystallites and nonlinear optics (1991) Appl. Phys. A, 53, pp. 465-474; Bawendi, M.G., Carrol, P.J., Wilson, W.L., Luminescence properties of cadmium selenide quantum crystallites: resonance between interior and surface localized states (1992) J. Chem. Phys., 96, pp. 946-954; Wahab, H.S., Bredow, T., Aliwi, S.M., MSINDO quantum chemical modelling study of water molecule adsorption at nano-sized anatase TiO 2 surfaces (2008) Chem. Phys., 354, pp. 50-57; Wang, E., He, T., Zhao, L., Chen, Y., Gao, Y., Improved visible light photocatalytic activity of titania doped with tin and nitrogen (2010) J. Mater. Chem., 21, pp. 144-150
Uncontrolled Keywords: 2,4-DCP, Degradation, Magnetically separable, TiO 2, TiO 2/SiO 2/NiFe 2O 4 nanocomposite, Visible light, 2 ,4-DCP, 2 ,4-Dichlorophenol, Adsorption desorption, Band gap energy, BET surface area, Chemical state, Crystalline phase, Elemental compositions, Good stability, Initial concentration, Mass recovery, Nickel ferrite, Phenolic compounds, Photocatalytic activities, Sunlight irradiation, TiO, Titania, Visible light absorption, Adsorption, Chemical analysis, Coercive force, Desorption, Hysteresis, Light, Light absorption, Magnetic fields, Nickel coatings, Particle size analysis, Phenols, Photocatalysis, Photocatalysts, Pore size, Remanence, Saturation magnetization, Silica, Silicon compounds, Silicon oxides, Titanium dioxide, Nanocomposites.
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 17 Mar 2014 01:33
Last Modified: 03 Jul 2017 08:44
URI: http://eprints.um.edu.my/id/eprint/9450

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year