Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review

Mook, W.T. and Chakrabarti, M.H. and Aroua, M.K. and Khan, G.M.A. and Ali, B.S. and Islam, M.S. and Abu Hassan, M.A. (2012) Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination, 285. pp. 1-13. ISSN 0011-9164

Full text not available from this repository. (Request a copy)
Official URL: http://www.sciencedirect.com/science/article/pii/S...

Abstract

Protein rich wastes from aquaculture systems result in total ammonia nitrogen (TAN), total organic carbon (TOC) and biochemical oxygen demand (BOD). A number of conventional approaches have been adopted for the removal of these wastes in aquaculture ponds and hatcheries with varying degrees of success but they face critical problems such as membrane fouling, high cost or the generation of toxic by-products. To overcome such issues, electrochemical technology is commonly employed. The advantages of electrochemical treatment include high efficiency, ambient operating conditions, small equipment sizes, minimal sludge generation and rapid start-up. An even better system involves bio-electrochemical reactors (BERs), which have the potential to generate energy from wastewater (by means of microbial fuel cells) or a valuable product such as hydrogen (using microbial electrolysis cells). Mechanisms of cathodic nitrate reduction and anodic oxidation in electrochemical and bio-electrochemical technology are reported in this review. Also some work on the simultaneous removal of nitrate and organic matter by Electro-Fenton and microbial fuel cells are elaborated upon. It is apparent that BERs can remove contaminants at high efficiencies (≈ 99%) whilst giving least impact upon the environment.

Item Type: Article
Additional Information: Cited By (since 1996):8 Export Date: 21 April 2013 Source: Scopus CODEN: DSLNA :doi 10.1016/j.desal.2011.09.029 Language of Original Document: English Correspondence Address: Mook, W.T.; Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; email: mookweitze@yahoo.com.my References: Razak, W., Othman, S., Aminuddin, M., Hashim, W.S., Izyan, K., Bamboo as an eco-friendly material for use in aquaculture industry in Malaysia (2008) J. Sustain. Dev., 1, pp. 49-54; Othman, M.F., Challenges ahead in meeting aquaculture production in Malaysia under the Third National Agricultural Policy (2010) FFTC 1998-2010 Report, Food & Fertilizer Technology Center for the Asian and Pacific Region; (2010) Tenth Malaysia Plan, The Economic Planning Unit 2010 Report, Prime Minister's Department, Putrajaya, Government of Malaysia, , EPU; Nora'aini, A., Wahab, M.A., Jusoh, A., Hasan, M.R., Ghazali, N., Kamaruzaman, K., Treatment of aquaculture wastewater using ultra-low pressure asymmetric polyethersulfone (PES) membrane (2005) Desalination, 185, pp. 317-326; Camargo, J.A., Alonso, A., Salamanca, A., Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates (2005) Chemosphere, 58, pp. 1255-1267; Fernandez, Y.N., Maranon, E., Soons, J., Castrillon, L., Denitrification of wastewater containing high nitrate and calcium concentrations (2008) Bioresour. Technol., 99, pp. 7976-7981; Zhou, M.H., Wang, W., Chi, M.L., Enhancement on the simultaneous removal of nitrite and organic pollutants from groundwater by three-dimensional bio-electrochemical reactor (2009) Bioresour. Technol., 100, pp. 4662-4668; Ward, M.H., deKok, T.M., Levallois, P., Brender, J., Gulis, G., Nolan, B.T., VanDerslice, J., Workgroup report: drinking-water nitrate and health - recent findings and research needs (2005) Environ. Heal. Perspect., 113, pp. 1607-1614; Van, R.J., The potential for integrated biological treatment systems in recirculating fish culture: a review (1996) Aquaculture, 139, pp. 181-201; Chou, W.L., Wang, C.T., Hsu, C.W., Huang, K.Y., Liu, T.C., Removal of total organic carbon from aqueous solution containing polyvinyl alcohol by electrocoagulation technology (2010) Desalination, 259, pp. 103-110; Mostofa, K.M.G., Honda, Y., Sakugawa, H., Dynamics and optical nature of fluorescent dissolved organic matter in river waters in Hiroshima Prefecture, Japan (2005) Geochem. J., 39, pp. 257-271; Mirzoyan, N., Tal, Y., Gross, A., Anaerobic digestion of sludge from intensive recirculating aquaculture systems: review (2010) Aquaculture, 306, pp. 1-6; Saleem, M., Essa, M.H., Suitability for sustainable reuse of secondary effluent: a case study in Saudi Arabia (2010) NED Univ. J. Res., 7, pp. 23-34; Liu, C.C.K., Xia, W., Park, J.W., A wind-driven reverse osmosis system for aquaculture wastewater reuse and nutrient recovery (2007) Desalination, 202, pp. 24-30; Qin, G., Liu, C.C.K., Richman, N.H., Moncur, J.E.T., Aquaculture wastewater treatment and reuse by wind-driven reverse osmosis membrane technology: a pilot study on Coconut Island, Hawaii (2005) Aquac. Eng., 32, pp. 365-378; Matos, C.T., Sequeira, A.M., Velizarov, S., Crespo, J.G., Reis, M.A.M., Nitrate removal in a closed marine system through the ion exchange membrane bioreactor (2009) J. Hazard. Mater., 166, pp. 428-434; Lekang, O.I., Kleppe, H., Efficiency of nitrification in trickling filters using different filter media (2000) Aquac. Eng., 21, pp. 181-199; Schnel, N., Barak, Y., Ezer, T., Dafni, Z., Rijn, V.J., Design and performance of a zero-discharge tilapia recirculating system (2002) Aquac. Eng., 26, pp. 191-203; Brazil, B.L., Performance and operation of a rotating biological contactor in a tilapia recirculating aquaculture system (2006) Aquac. Eng., 34, pp. 261-274; Reyes, A.A.D., Lawson, T.B., Combination of a bead filter and rotating biological contactor in a recirculating fish culture system (1996) Aquac. Eng., 15, pp. 27-39; Timmons, M.B., Holder, J.L., Ebeling, J.M., Application of microbead biological filters (2006) Aquac. Eng., 34, pp. 332-343; Greiner, A.D., Timmons, M.B., Evaluation of the nitrification rates of microbead and trickling filters in an intensive recirculating tilapia production facility (1998) Aquac. Eng., 18, pp. 189-200; Davidson, J., Helwig, N., Summerfelt, S.T., Fluidized sand biofilters used to remove ammonia, biochemical oxygen demand, total coliform bacteria, and suspended solids from an intensive aquaculture effluent (2008) Aquac. Eng., 39, pp. 6-15; Crab, R., Kochva, M., Verstrate, W., Avnimelech, Y., Bio-flocs technology application in over-wintering of tilapia (2009) Aquac. Eng., 40, pp. 105-112; Avnimelech, Y., Carbon/nitrogen ratio as a control element in aquacultural systems (1999) Aquaculture, 176, pp. 227-235; Lin, Y.F., Jing, S.R., Lee, D.Y., Wang, T.W., Nutrient removal from aquaculture wastewater using a constructed wetlands system (2002) Aquaculture, 209, pp. 169-184; Sindilariu, P.D., Schulz, C., Reiter, R., Treatment of flow through trout aquaculture effluents in a constructed wetland (2007) Aquaculture, 217, pp. 207-221; Naylor, S., Brisson, J., Labelle, M.A., Comeau, Y., Treatment of freshwater fish farm effluent using constructed wetlands: the role of plants and substrate (2003) Water Sci. Technol., 48, pp. 215-222; Afonso, M.D., Jaber, J.O., Mohsen, M.S., Brackish groundwater treatment by reverse osmosis in Jordan (2004) Desalination, 164, pp. 157-171; Kim, Y.M., Kim, S.J., Kim, Y.S., Lee, S., Kim, I.S., Kim, J.H., Overview of systems engineering approaches for a large-scale seawater desalination plant with a reverse osmosis network (2009) Desalination, 238, pp. 312-332; Hilal, N., Al-Zoubi, H., Darwish, N.A., Mohammed, A.W., A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy (2004) Desalination, 170, pp. 281-308; Lopez-Ramirez, J.A., Coello Oviedo, M.D., Quiroga Alonso, J.M., Comparative studies of reverse osmosis membranes for wastewater reclamation (2006) Desalination, 191, pp. 137-147; Liu, C.C.K., Park, J., Migita, R., Qin, G., Experiments of a prototype wind-driven reverse osmosis desalination system with feedback control (2002) Desalination, 150, pp. 277-287; Hasson, D., Drak, A., Semiat, R., Inception of CaSO 4 scaling on RO membranes at various water recovery levels (2001) Desalination, 139, pp. 73-81; Sakinah, A.M.M., Ismail, A.F., Illias, R.M., Hassan, O., Fouling characteristic and autopsy of a PES ultrafiltration membrane in cyclodextrins separation (2007) Desalination, 207, pp. 227-242; Koyuncu, I., Wiesner, M.R., Bele, C., Coriton, G., Djafer, M., Cavard, J., Bench-scale assessment of pretreatment to reduce fouling of salt-rejecting membranes (2006) Desalination, 197, pp. 94-105; Gemende, B., Gerbeth, A., Pausch, N., Bresinsky, A.V., Tests for the application of membrane technology in a new method for intensive aquaculture (2008) Desalination, 224, pp. 57-63; Oron, G., Gillerman, L., Bick, A., Buriakovsky, N., Manor, Y., Yitshak, E.B., Katz, L., Hagin, J., A two stage membrane treatment of secondary effluent for unrestricted reuse and sustainable agricultural production (2006) Desalination, 187, pp. 335-345; Velizarov, S., Matos, C., Oehmen, A., Serra, S., Reis, M., Crespo, J., Removal of inorganic charged micropollutants from drinking water supplies by hybrid ion exchange membrane processes (2008) Desalination, 223, pp. 85-90; Roquebert, V., Booth, S., Cushing, R.S., Crozes, G., Hansen, E., Electrodialysis reversal (EDR) and ion exchange as polishing treatment for perchlorate treatment (2000) Desalination, 131, pp. 285-291; Xu, J.H., Gao, N.Y., Deng, Y., Sui, M.H., Tang, Y.L., Perchlorate removal by granular activated carbon coated with cetyltrimethyl ammonium chloride (2011) Desalination, 275, pp. 87-92; Shrimali, M., Singh, K.P., New methods of nitrate removal from water (2001) Environ. Pollut., 112, pp. 351-359; Karanasios, K.A., Vasiliadou, I.A., Pavlou, S., Vayenas, D.V., Hydrogenotrophic denitrification of potable water: a review (2010) J. Hazard. Mater., 180, pp. 20-37; Strathmann, H., Electrodialysis, a mature technology with a multitude of new applications (2010) Desalination, 264, pp. 268-288; Monsalvo, V.M., Mohedano, A.F., Rodriguez, J.J., Activated carbons from sewage sludge: application to aqueous-phase adsorption of 4-chlorophenol (2011) Desalination, 277, pp. 377-382; Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., Verstraete, W., Nitrogen removal techniques in aquaculture for a sustainable production (2007) Aquaculture, 270, pp. 1-14; Eding, E.H., Kamstra, A., Verreth, J.A.J., Huisman, E.A., Klapwijk, A., Design and operation of nitrifying trickling filters in recirculating aquaculture: a review (2006) Aquac. Eng., 34, pp. 234-260; Summerfelt, S.T., Design and management of conventional fluidized-sand biofilters (2006) Aquac. Eng., 32, pp. 275-302; Moore, R., Quarmby, J., Stephenson, T., The effect of media size on the performance of biological aerated filters (2001) Water Res., 35, pp. 2514-2522; Chan, Y.J., Chong, M.F., Law, C.L., Hassell, D.G., A review on anaerobic-aerobic treatment of industrial and municipal wastewater (2009) Chem. Eng. J., 155, pp. 1-18; Chowdhury, P., Viraraghavan, T., Srinivasan, A., Biological treatment process for fish processing wastewater - a review (2010) Bioresour. Technol., 101, pp. 439-449; Phillips, J.B., (1997), Denitrification of Recirculating Aquaculture System Waters using an Upflow Biofilter and a Fermented Substrate, M.S. thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USABurford, M.A., Thompson, P.J., McIntosh, R.P., Bauman, R.H., Pearson, D.C., Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize (2003) Aquaculture, 219, pp. 393-411; Zhu, S., Chen, S., Effects of organic carbon on nitrification rate in fixed film biofilters (2001) Aquac. Eng., 25, pp. 1-11; Roy, R., Knowles, R., Differential inhibition by allylsulfide of nitrification and methane oxidation on freshwater sediment (1995) Appl. Environ. Microbiol., 61, pp. 4278-4283; Kadlec, R., Knight, R.L., (1996) Treatment Wetlands, , CRC Press Inc., Boca Raton, FL; Hammer, D.A., (1997) Creating Freshwater Wetlands, , CRC Press Inc., Boca Raton, FL; Verhoeven, T.A., Meuleman, A.F.M., Wetlands for wastewater treatment: opportunities and limitations (1999) Ecol. Eng., 12, pp. 5-12; Schulz, C., Gelbrecht, J., Rennert, B., Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow (2003) Aquaculture, 217, pp. 207-221; Lin, Y.F., Jing, S.R., Lee, D.Y., Chang, Y.F., Chen, Y.M., Shih, K.C., Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate (2005) Environ. Pollut., 134, pp. 411-421; Massingill, M.J., Kasckow, E.M., Chamberlain, R.J., Carberg, J.M., Olst, J.C.V., Constructed wetlands for water treatment in aquaculture (1998) Proceedings of the Second International Symposium on Recirculating Aquaculture, Roanoke, VA; Krumins, V., Ebeling, J., Wheaton, F., Part-day ozonation for nitrogen and organic carbon control in recirculating aquaculture system (2001) Aquac. Eng., 24, pp. 231-241; Rosenthal, H., Black, E.A., (1993) Recirculation Systems in Aquaculture, Techniques for Modern Aquaculture, pp. 284-294. , American Society of Agricultural Engineers, Saint Joseph, MI, Ed. J.K. Wang (Ed.); Aitcheson, S.J., Arnett, J., Murray, K.R., Zhang, J., Removal of aquaculture therapeutants by carbon adsorption: 1. Equilibrium adsorption behavior of single components (2000) Aquaculture, 183, pp. 269-284; Aloui, F., Khoufi, S., Loukil, S., Sayadi, S., Performances of an activated sludge process for the treatment of fish processing saline wastewater (2009) Desalination, 246, pp. 389-396; Tango, M.S., Gagnon, G.A., Impact of ozonation on water quality in marine recirculation system (2003) Aquac. Eng., 29, pp. 125-137; Bullock, G.L., Summerfelt, S.T., Noble, A.C., Weber, A.L., Durant, M.D., Hankins, J.A., Ozonation of a recirculating rainbow trout culture system: I. Effects on bacterial gill disease and heterotrophic bacteria (1997) Aquaculture, 158, pp. 43-55; Summerfelt, S.T., Sharrer, M.J., Tsukuda, S.M., Gearheart, M., Process requirements for achieving full- flow disinfection or recirculating water using ozonation and UV irradiation (2009) Aquac. Eng., 40, pp. 17-27; Martins, C.I.M., Eding, E.H., Verdegem, M.C.J., Heinsbroek, L.T.N., Schneider, O., Blancheton, J.P., Orbcastel, E.R.D., Verreth, J.A.J., New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability (2010) Aquac. Eng., 43, pp. 83-93; Balong, N., Ismail, A.F., Salim, M.R., Matsuura, T., A review of the effects of emerging contaminants in wastewater and options for their removal (2009) Desalination, 239, pp. 229-246; Summerfelt, S.T., Ozonation and UV irradiation- an introduction and examples of current applications (2003) Aquac. Eng., 28, pp. 21-36; Sharrer, M.J., Summerfelt, S.T., Ozonation followed by ultraviolet irradiation provides effective bacteria inactivation in a freshwater recirculating system (2007) Aquac. Eng., 37, pp. 180-191; Dash, B.P., Chaudhari, S., Electrochemical denitrification of simulated ground water (2005) Water Res., 39, pp. 4065-4072; Grimm, J., Bessarabov, D., Sanderson, R., Review of electro-assisted methods for water purification (1998) Desalination, 115, pp. 285-294; Li, M., Feng, C., Zhang, Z., Shen, Z., Sugiura, N., Electrochemical reduction of nitrate using various anodes and a Cu/Zn cathode (2009) Electrochem. Commun., 11, pp. 1853-1856; Chakrabarti, M.H., Saleem, M., Irfan, M.F., Raza, S., Hasan, D.B., Daud, W.M.A.W., Application of waste derived activated carbon felt electrodes in minimizing NaCl use for electrochemical disinfection of water (2011) Int. J. Electrochem. Sci., 6, pp. 4470-4480; Li, M., Feng, C., Zhang, Z., Zhao, R., Lei, X., Chen, R., Sugiura, N., Application of an electrochemical-ion exchange reactor for ammonia removal (2009) Electrochim. Acta, 55, pp. 159-164; Paidar, M., Bouzek, K., Bergmann, H., Influence of cell construction on the electrochemical reduction of nitrate (2002) Chem. Eng. J., 85, pp. 99-109; Li, M., Feng, C.P., Zhang, Z.N., Lei, X.H., Chen, R.Z., Yang, Y.N., Sugiura, N., Simultaneous reduction of nitrate and oxidation by-products using electrochemical method (2009) J. Hazard. Mater., 171, pp. 724-730; Hasson, D., Sidorenko, G., Semiat, R., Calcium carbonate hardness removal by a novel electrochemical seeds system (2010) Desalination, 263, pp. 285-289; Lin, S.H., Wu, C.L., Electrochemical removal of nitrate and ammonia for aquaculture (1996) Water Res., 30, pp. 715-721; Abuzaid, N.S., Hamouz, Z.A., Bukhari, A.A., Essa, M.H., Electrochemical treatment of nitrate using stainless steel electrodes (1999) Water Air Soil Pollut., 109, pp. 429-442; Li, M., Feng, C., Zhang, Z., Yang, S., Sugiura, N., Treatment of nitrate contaminated water using an electrochemical method (2010) Bioresour. Technol., 101, pp. 6553-6557; Virkutyte, J., Jegatheesan, V., Electro- Fenton, hydrogenotrophic and Fe 2+ ions mediated TOC and nitrate removal from aquaculture system: different experimental strategies (2009) Bioresour. Technol., 100, pp. 2189-2197; Martinez-Huitle, C.A., Ferro, S., Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes (2006) Chem. Soc. Rev., 35, pp. 1324-1340; Comninellis, C., Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment (1994) Electrochim. Acta, 39 (11-12), pp. 1857-1862; Bonfatti, F., Ferro, S., Lavezzo, F., Malacarne, M., Lodi, G., DeBattisti, A., Electrochemical incineration of glucose as a model organic susbtrate. II. Role of active chlorine mediation (2000) J. Electrochem. Soc., 147, pp. 592-596; Feng, C., Sugiura, N., Shimada, S., Maekawa, T., Development of a high performance electrochemical wastewater treatment system (2003) J. Hazard. Mater., 103, pp. 65-78; Chen, G., Electrochemical technologies in wastewater treatment (2004) Sep. Purif. Technol., 38, pp. 11-41; Bergmann, M.E.H., Rollin, J., Product and by-product formation in laboratory studies on d
Uncontrolled Keywords: Aquaculture; Bio-electrochemical reactors; Total ammonium nitrate; Total organic carbon; Wastewater; Ammonium nitrate; Aquaculture systems; Aquaculture wastewater; Conventional approach; Critical problems; Electro-Fenton; Electrochemical technology; Electrochemical treatments; High costs; Microbial electrolysis cells; Nitrate reduction; Operating condition; Simultaneous removal; Sludge generation; Small equipment; Start-ups; Total ammonia nitrogens; Ammonia; Ammonium compounds; Anodic oxidation; Biochemical oxygen demand; Carbon; Electric reactors; Electrolytic cells; Hydrogen; Membrane fouling; Microbial fuel cells; Nitrates; Organic carbon; Nitrogen removal; electrochemistry; environmental impact; fouling; fuel cell; membrane; nitrate; nitrogen; oxidation; pollutant removal; reduction; toxic material; waste treatment.
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TP Chemical technology
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 16 Jul 2013 02:15
Last Modified: 12 Nov 2013 00:24
URI: http://eprints.um.edu.my/id/eprint/7398

Actions (login required)

View Item View Item