Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core

Rifat, A.A. and Mahdiraji, Ghafour Amouzad and Chow, D.M. and Shee, Yu Gang and Ahmed, R. and Adikan, Faisal Rafiq Mahamd (2015) Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors, 15 (5). pp. 11499-11510. ISSN 1424-8220, DOI https://doi.org/10.3390/s150511499.

[img]
Preview
PDF (Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core)
Photonic_Crystal_Fiber-Based_Surface_Plasmon_Resonance_Sensor_with_Selective_Analyte_Channels.pdf - Published Version

Download (1MB)
Official URL: http://www.mdpi.com/1424-8220/15/5/11499/pdf

Abstract

We propose a surface plasmon resonance (SPR) sensor based on photonic crystal fiber (PCF) with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs). Surface plasmons along the metal surface are excited with a leaky Gaussian-like core guided mode. Numerical investigations of the fiber's properties and sensing performance are performed using the finite element method (FEM). The proposed sensor shows maximum amplitude sensitivity of 418 Refractive Index Units (RIU-1) with resolution as high as 2.4 x 10(-5) RIU. Using the wavelength interrogation method, a maximum refractive index (RI) sensitivity of 3000 nm/RIU in the sensing range of 1.46-1.49 is achieved. The proposed sensor is suitable for detecting various high RI chemicals, biochemical and organic chemical analytes. Additionally, the effects of fiber structural parameters on the properties of plasmonic excitation are investigated and optimized for sensing performance as well as reducing the sensor's footprint.

Item Type: Article
Funders: University of Malaya MOHE-High Impact Research UM.0000005/HIR.C1
Additional Information: ISI Document Delivery No.: CL7WN Times Cited: 0 Cited Reference Count: 35 Cited References: Akowuah EK, 2012, IEEE J QUANTUM ELECT, V48, P1403, DOI 10.1109/JQE.2012.2213803 Mahdiraji GA, 2014, FIBER INTEGRATED OPT, V33, P85, DOI 10.1080/01468030.2013.879680 Biswas T, 2014, J OPTICS-UK, V16, DOI 10.1088/2040-8978/16/4/045001 Choi SH, 2011, OPT EXPRESS, V19, P458, DOI 10.1364/OE.19.000458 Daghestani HN, 2010, SENSORS-BASEL, V10, P9630, DOI 10.3390/s101109630 Dash JN, 2014, IEEE PHOTONIC TECH L, V26, P595, DOI 10.1109/LPT.2014.2301153 Dash JN, 2014, IEEE PHOTONIC TECH L, V26, P1092, DOI 10.1109/LPT.2014.2315233 Gao D, 2014, OPT COMMUN, V313, P94, DOI 10.1016/j.optcom.2013.10.015 Guo JQ, 2014, OPT EXPRESS, V22, P7607, DOI 10.1364/OE.22.007607 Gupta B, 2009, Journal of Computer Systems, Networks, and Communications, DOI 10.1155/2009/409873, 10.1155/2009/979761 Hassani A, 2008, ELECTROMAGNETICS, V28, DOI 10.1080/02726340801921627 Hassani A, 2006, OPT EXPRESS, V14, P11616, DOI 10.1364/OE.14.011616 Homola J, 2003, ANAL BIOANAL CHEM, V377, P528, DOI 10.1007/s00216-003-2101-0 Ismach A, 2010, NANO LETT, V10, P1542, DOI 10.1021/nl9037714 JORGENSON RC, 1993, SENSOR ACTUAT B-CHEM, V12, P213, DOI 10.1016/0925-4005(93)80021-3 Kanso M, 2007, J OPT A-PURE APPL OP, V9, P586, DOI 10.1088/1464-4258/9/7/008 Kim JA, 2013, SENSOR ACTUAT B-CHEM, V187, P426, DOI 10.1016/j.snb.2013.01.040 Kiraly B, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3804 Lu Y, 2012, SENSORS-BASEL, V12, P12016, DOI 10.3390/s120912016 Lu Y, 2013, SENSORS-BASEL, V13, P956, DOI 10.3390/s130100956 Maharana PK, 2012, SENSOR ACTUAT B-CHEM, V169, P161, DOI 10.1016/j.snb.2012.04.051 Ortega-Mendoza JG, 2014, SENSORS-BASEL, V14, P18701, DOI 10.3390/s141018701 Otupiri R, 2014, IEEE PHOTONICS J, V6, DOI 10.1109/JPHOT.2014.2335716 Palik E. D., 1998, HDB OPTICAL CONSTANT, V3 Qin W, 2014, OPT LASER ENG, V58, P1, DOI 10.1016/j.optlaseng.2014.01.003 Salihoglu O, 2012, APPL PHYS LETT, V100, DOI 10.1063/1.4721453 Sazio PJA, 2006, SCIENCE, V311, P1583, DOI 10.1126/science.1124281 Shuai BB, 2012, OPT EXPRESS, V20, P25858, DOI 10.1364/OE.20.025858 Takeyasu N, 2005, JPN J APPL PHYS 2, V44, pL1134, DOI 10.1143/JJAP.44.L1134 Vieweg M, 2010, OPT EXPRESS, V18, P25232, DOI 10.1364/OE.18.025232 Wu C, 2013, OPT LETT, V38, P3283, DOI 10.1364/OL.38.003283 Wu L, 2010, OPT EXPRESS, V18, P14395, DOI 10.1364/OE.18.014395 Wu Y, 2014, OPT LETT, V39, P1235, DOI 10.1364/OL.39.001235 Yu X, 2010, J OPTICS-UK, V12, DOI 10.1088/2040-8978/12/1/015005 Yuan GH, 2014, OPTIK, V125, P850, DOI 10.1016/j.ijleo.2013.07.088 Rifat, Ahmmed A. Mahdiraji, G. Amouzad Chow, Desmond M. Shee, Yu Gang Ahmed, Rajib Adikan, Faisal Rafiq Mahamd Engineering, Faculty /I-7935-2015 Engineering, Faculty /0000-0002-4848-7052 University of Malaya MOHE-High Impact Research UM.0000005/HIR.C1 This work is fully supported by the University of Malaya MOHE-High Impact Research grant number UM.0000005/HIR.C1. 0 MDPI AG BASEL SENSORS-BASEL
Uncontrolled Keywords: Photonic crystal fiber, surface plasmon resonance, optical fiber, sensors, optical sensing and sensors, BIOSENSORS, SENSITIVITY,
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 09 Jun 2016 00:15
Last Modified: 11 Oct 2018 01:57
URI: http://eprints.um.edu.my/id/eprint/15852

Actions (login required)

View Item View Item