Rahman, M.M. and Saha, S. and Mojumder, S. and Naim, A.G. and Saidur, R. and Ibrahim, T.A. (2015) Effect of sinesquared thermal boundary condition on augmentation of heat transfer in a triangular solar collector filled with different nanofluids. Numerical Heat Transfer Part BFundamentals, 68 (1). pp. 5374. ISSN 10407790

PDF (Effect of SineSquared Thermal Boundary Condition on Augmentation of Heat Transfer in a Triangular Solar Collector Filled with Different Nanofluids)
Effect_of_SineSquared_Thermal_Boundary_Condition_on_Augmentation_of_Heat_Transfer.pdf  Published Version Download (1MB) 
Abstract
Numerical study of heat transfer phenomena has become a major field of research nowadays. In engineering applications, different boundary conditions arise which have various effects on heat transfer characteristics. For the present work, a triangularshape cavity has been analyzed for the sinesquared thermal boundary condition which is common in practical cases. The augmentation of heat transfer has been done by introducing a nanofluid inside the cavity. Different solid volume fractions (phi=0, 0.05, 0.1, 0.2) of waterCuO, waterAl2O3, and waterTiO2 nanofluid have been tested for the cavity with a wide range of Rayleigh number (Ra=10(5)10(8)) and for dimensionless time (tau=0.1 to 1). The Galerkin weighted residual finiteelement method has been applied for the numerical solution, and numerical accuracy has been checked by code validation. The heat transfer augmentation for different nanofluids has been done in the light of local (Nu(L)) and overall Nusselt number (Nu(av)), and the results have been presented with streamline, isotherm, and related contours, in graphs and charts. It has been found that variable boundary condition has significant effect on flow and thermal fields and increase of solid volume fraction enhances the heat transfer.
Item Type:  Article 

Additional Information:  ISI Document Delivery No.: CG5MI Times Cited: 0 Cited Reference Count: 38 Cited References: AbuNada E, 2011, NUMER HEAT TR AAPPL, V59, P403, DOI 10.1080/10407782.2011.552363 Ahmed MA, 2012, INT J HEAT MASS TRAN, V55, P5891, DOI 10.1016/j.ijheatmasstransfer.2012.05.086 Bararnia H, 2011, NUMER HEAT TR AAPPL, V59, P487, DOI 10.1080/10407782.2011.541195 Basak T, 2012, INT J HEAT MASS TRAN, V55, P4521, DOI 10.1016/j.ijheatmasstransfer.2012.03.061 Basak T, 2009, INT J HEAT MASS TRAN, V52, P2824, DOI 10.1016/j.ijheatmasstransfer.2008.10.034 Basak T, 2012, INT J HEAT MASS TRAN, V55, P5526, DOI 10.1016/j.ijheatmasstransfer.2012.05.025 Bilgen E, 2007, INT J HEAT MASS TRAN, V50, P139, DOI 10.1016/j.ijheatmasstransfer.2006.06.027 Billah MM, 2013, INT COMMUN HEAT MASS, V49, P115, DOI 10.1016/j.icheatmasstransfer.2013.09.006 Chang TB, 2012, INT J HEAT MASS TRAN, V55, P1014, DOI 10.1016/j.ijheatmasstransfer.2011.10.009 Cheong HT, 2013, INT COMMUN HEAT MASS, V45, P75, DOI 10.1016/j.icheatmasstransfer.2013.04.017 Choi SK, 2014, NUMER HEAT TR AAPPL, V65, P287, DOI 10.1080/10407782.2013.831695 Colangelo G, 2013, APPL ENERG, V111, P80, DOI 10.1016/j.apenergy.2013.04.069 Dalal A, 2007, COMPUT FLUIDS, V36, P680, DOI 10.1016/j.compfluid.2006.05.005 da Silva A, 2012, INT J HEAT MASS TRAN, V55, P6808, DOI 10.1016/j.ijheatmasstransfer.2012.06.088 DELCAMPO EM, 1988, NUMER HEAT TRANSFER, V13, P353 Ghasemi B, 2010, INT COMMUN HEAT MASS, V37, P1142, DOI 10.1016/j.icheatmasstransfer.2010.06.020 Ghasemi B, 2010, INT J THERM SCI, V49, P931, DOI 10.1016/j.ijthermalsci.2009.12.017 Javadi FS, 2013, RENEW SUST ENERG REV, V28, P232, DOI 10.1016/j.rser.2013.06.053 Karami M, 2014, SOL ENERG MAT SOL C, V121, P114, DOI 10.1016/j.solmat.2013.11.004 Kefayati GR, 2013, POWDER TECHNOL, V243, P171, DOI 10.1016/j.powtec.2013.03.047 Koca A, 2007, INT COMMUN HEAT MASS, V34, P511, DOI 10.1016/j.icheatmasstransfer.2007.01.006 Molla MM, 2011, MATH COMPUT MODEL, V53, P1310, DOI 10.1016/j.mcm.2010.12.017 Moraveji MK, 2013, INT COMMUN HEAT MASS, V44, P135, DOI 10.1016/j.icheatmasstransfer.2013.03.011 Nasrin R, 2012, INT COMMUN HEAT MASS, V39, P270, DOI 10.1016/j.icheatmasstransfer.2011.11.004 Nasrin R, 2012, INT COMMUN HEAT MASS, V39, P1226, DOI 10.1016/j.icheatmasstransfer.2012.06.005 Oztop HF, 2012, INT J HEAT MASS TRAN, V55, P5076, DOI 10.1016/j.ijheatmasstransfer.2012.05.007 Rahman MM, 2012, NUMER HEAT TR AAPPL, V62, P973, DOI 10.1080/10407782.2012.715983 Rahman MM, 2014, INT COMMUN HEAT MASS, V50, P117, DOI 10.1016/j.icheatmasstransfer.2013.10.008 Rahman MM, 2012, INT J HEAT MASS TRAN, V55, P6250, DOI 10.1016/j.ijheatmasstransfer.2012.06.055 Rahman MM, 2011, INT COMMUN HEAT MASS, V38, P1360, DOI 10.1016/j.icheatmasstransfer.2011.08.011 Rahman MM, 2014, NUMER HEAT TR BFUND, V65, P282, DOI 10.1080/10407790.2013.849990 Saidur R, 2012, INT J HEAT MASS TRAN, V55, P5899, DOI 10.1016/j.ijheatmasstransfer.2012.05.087 Saleh H, 2011, INT J HEAT MASS TRAN, V54, P194, DOI 10.1016/j.ijheatmasstransfer.2010.09.053 Sivasankaran S, 2014, NUMER HEAT TR AAPPL, V65, P247, DOI 10.1080/10407782.2013.825510 Sivasankaran S, 2011, INT J HEAT MASS TRAN, V54, P512, DOI 10.1016/j.ijheatmasstransfer.2010.09.018 Yousefi T, 2012, RENEW ENERG, V39, P293, DOI 10.1016/j.renene.2011.08.056 Yu ZT, 2012, INT J HEAT MASS TRAN, V55, P1141, DOI 10.1016/j.ijheatmasstransfer.2011.09.058 Yu ZT, 2011, INT J HEAT MASS TRAN, V54, P526, DOI 10.1016/j.ijheatmasstransfer.2010.09.017 Rahman, M. M. Saha, S. Mojumder, S. Naim, A. G. Saidur, R. Ibrahim, Talaat A. Engineering, Faculty /I79352015 Engineering, Faculty /0000000248487052 0 TAYLOR & FRANCIS INC PHILADELPHIA NUMER HEAT TR BFUND 
Uncontrolled Keywords:  Laminar naturalconvection, waterbased nanofluids, sinusoidal temperature, transfer enhancement, rectangular enclosure, cuo nanofluid, cavity, flow, performance, simulation, 
Subjects:  T Technology > T Technology (General) T Technology > TJ Mechanical engineering and machinery 
Divisions:  Faculty of Engineering 
Depositing User:  Mr Jenal S 
Date Deposited:  25 Apr 2016 03:21 
Last Modified:  25 Apr 2016 03:21 
URI:  http://eprints.um.edu.my/id/eprint/15849 
Actions (login required)
View Item 