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Numerical study of heat wansfer phenomena has become a major field of research
nowadays. In engineeving applications, different boundary conditions arise which have
various effects on heat transfer charactevistics. For the present work, a triangular-shape
cavity has been analyzed for the sine-squarved thevmal boundary condition which is common
in practical cases. The augmentation of heat transfer has been done by introducing
a nanoffuid inside the cavity. Different solid volume fractions (=0, 0.05, 0.1, 0.2)
of water-Cu O, water-Al,Oy, and water-Ti Oy nanoffuid have been tested for the cavity with
a wide range of Rayleigh number (Ra= 10°—10%) and for dimensionless time (t=0.1 to I).
The Gulerkin weighted residual finite-element method has been applied for the numerical
solution, and numerical accuracy has been checked by code validation. The heat transfer
augmentation for different nanofiuids has been done in the light of local (Nug) and
overall Nusselt number (Nug,), and the results have been presented with streamliine,
isotherm, and related contowrs, in graphs and charts. It has been found that vaviable
boundary condition has significant effect on flow and thermal fields and increase
of solid volume fraction enhances the heat transfer.
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NOMENCLATURE

cy specific heat, J/kgk o thermal diffusivity, m?/s
g gravitational acceleration, m ;’sz B thermal expansion coefficient, K™
k thermal conductivity, W/mk r, diffusion term in Eq. (1)
L length of the enclosure, m 0 nondimensional temperature
Nu Nusselt number n dynamic viscosity, kg/ms
P dimensional pressure, kg/m s> v kinematic viscosity, mz,r“s_]
P dimensionless pressure T dimensionless time
Pr Prandtl number p density, kg/m?
Ra Rayleigh number & solid volume fraction
S, source term in Eq. (1) \r streamfunction
1 dimensional time, s [} general dependent variable
T fluid temperature, K
u horizontal velocity component, m/s Subseripts
U dimensionless horizontal velocity av average

component ¢ cold
v vertical velocity component, m/s r fluid
Vv dimensionless vertical velocity h heat source

component L local
X horizontal coordinate, m nf nanofluid
X dimensionless horizontal coordinate max maximum
v vertical coordinate, m min minimum
Y dimensionless vertical coordinate 5 solid nanoparticle

1. INTRODUCTION

Augmentation of heat transfer using nanofluids is a cutting-edge research
topic. From different studies, it has been proved that nanofluid has great potential
to serve the purpose of heat transfer to a great extent. Apart from this, it has numer-
ous applications in different fields of science and technology such as electronics cool-
ing, chemical processing industries, food processing industries, space heating, solar
thermal collectors, desalination technology, and so on [1-5]. Basically, natural con-
vection plays a significant role in nanofluid-augmented heat transfer. Martin et al. [6]
analyzed the laminar natural convection in a triangular enclosure and showed the
effect of aspect ratio and Grashof number for different boundary conditions.
Rahman et al. [7] studied the natural-convection effects on heat and mass transfer
in a curvilinear triangular cavity and reported that Lewis number, Sherwood num-
ber, and buoyancy ratio have significant effects on heat and mass transfer. The
authors reported that increment of buoyancy ratio enhances heat and mass transfer,
while increment of Lewis number decreases heat transfer but enhances mass transfer.
Using the Bejan heatline concept, Basak et al. [8] visualized the heat flow due to
natural convection and concluded that increment of Rayleigh number makes the
convection mode of heat transfer stronger. However, this effect is not significant
for higher Prandtl (Pr) number. Koca et al. [9] studied the effect of Prandtl number
on natural convection in a triangular enclosure with a localized heater from the
bottom and reported that Prandtl number has a significant effect on heat transfer.

Nanofluids have been introduced as conventional fluids that have limitations in
their thermophysical properties. The improved thermo-physical properties of the



nanoparticles that are suspended in the base fluid are the main reason behind better
heat transfer. Different types of nanoparticles are suspended for preparing nano-
fluids such as metals, metal oxides, carbon substances, etc. Though different types
of nanofluid are available, very few of them are commercially viable. Among the
commercial nanofluids, CuO-water, AlLO;-water, and TiO,-water are used exten-
sively nowadays. Different solid volume fractions of this suspended nanoparticle
alter the consequent heat transfer. Different types of geometry have been studied
by introducing nanofluids into them. Among those geometries, square [10-12], rec-
tangular [13], and trapezoidal [14-16] are the common ones. The triangular type of
cavity has been given rather less attention, though this type of cavity has many
engineering applications. Sivsankaran and Pan [17] studied the natural convection
of nanofluids in a cavity with a sinusoidal boundary condition along with nonuni-
form temperature distributions and reported that amplitude ratio, solid volume
fraction, and Rayleigh number have noteworthy effects on heat transfer. Rahman
et al. [18] studied the heat transfer characteristic in an inclined lid-driven triangular
enclosure and found that the fluid flow and heat transfer pattern are strongly depen-
dent on the solid volume fraction of the nanofluid. Nasrin et al. [19] studied the
combined-convection flow in a triangular wavy chamber for nanofluids and observed
the effect of viscosity models. The authors reported effects of Reynolds number and
Richardson number along with solid volume fraction on heat transfer characteris-
tics. Yu et al. [20] studied the transient convection for different water-based nano-
fluids in an isosceles triangular cavity having a heated bottom and showed the
effect of Grashof number on heat transfer. Rahman et al. [21] studied the effect of
different nanofluids in a triangular-shape solar thermal collector and reported that
heat transfer can be increased up to 24.28% for 10% of the solid volume fraction
of the nanofluid. Ghasemi and Aminossadati [22] studied mixed convection for a
triangular cavity filled with nanofluid and claimed that the increase of nanoparticles
enhances the heat transfer. More related studies for the enhancement of heat transfer
using nanofluids can be found in recent literature [23-28]. From the aforementioned
review, it is evident that heat transfer may be enhanced by increasing solid volume

fraction, Rayleigh number, and Grashof number while decreasing Lewis number.
Boundary conditions are pertinent parameters which are modeled based on the
physical manifestation of that particular problem in real life. Different types of
boundary condition have tried in different literatures reports. Among them, a simply
heated wall, nonuniform heating, and linearly varying boundary conditions have
been studied extensively. The sinusoidally heated boundary condition is drawing
keen attention due to its frequent occurrence in engineering fields. The effect of vari-
able boundary conditions in a porous right-angled triangular cavity has been studied
by Basak et al. [29], and they reported the effect of variable boundary conditions on
heat transfer. Bilgen and Yedder [30] studied the effect of a sinusoidal temperature
profile on the wall for natural convection. Basak and Chamakha [31] studied a
square cavity filled with nanofluid for different boundary conditions and analyzed
the solutions for different pertinent parameters, showing that heat transfer is
influenced by solid volume fraction and the boundary condition. Cheong et al.
[32] studied the effect of aspect ratio in a square cavity for sinusoidal boundary con-
dition and showed that the convective flow pattern is affected significantly by the
boundary condition. More related literature [33-37] for sinusoidal thermal boundary



condition reveals that this sort of boundary condition has tremendous influence on
heat transfer.

Nanofluids are commonly used in solar collectors to improve the efficiency of
the collector. Different types of solar collector have been studied [21, 38, 39] for
different available nanofluids. Throughout this article, a triangular-shaped solar
thermal collector has been modeled. Boundary conditions are so modeled so that they
resemble the practical scenario. To the best knowledge of the authors, a triangular
solar thermal collector filled with different nanofluids and sinusoidally heated from
the bottom has not been analyzed yet. The challenge of augmentation of heat transfer
in solar thermal collectors can be met with this model. The study has been carried out
numerically with an accurate numerical procedure, and the related results are shown
using streamlines, isotherms, and related graphs and charts. The results reveal that the
augmentation of heat transfer is possible by introducing nanofluid inside the collector.

2. PROBLEM FORMULATION
2.1. Physical Modeling

The details of the problem are presented in Figure 1. In the figure, a
triangular-shape geometry of base length L and height of half of the base length L
is shown. The entire cavity is filled with nanofluid to increase the heat transfer inside
the cavity. A well-defined coordinate system has been fixed, and gravity is working
along the negative Y axis. The inclined walls of the cavity are kept at low tempera-
ture (T'=T,), and the horizontal wall is kept at a sinusoidally varying temperature
[T=T.+ (Tp— T.)Asin’(Kx)]. Here A is the amplitude of the wave and K is the
wave number, given by K =2n/L. Different types and concentrations (¢ =0, 0.05,
0.1, 0.2) of nanofluid, such as water-CuO, water-Al,03, and water-TiO,, have been
studied for this geometry. Radiation effects, and viscous dissipation with internal
heat generation have been neglected. Basically, this type of cavity is modeled as a
solar collector of which the inclined walls are the glass covers and the sinusoidally

heated wall is the collector plate. The temperature of the glass cover is very low rela-
tive to that of the base horizontal collector plate.

2.2. Mathematical Modeling

A set of governing equations has been formed assuming that the nanofluid is a
Newtonian fluid and the flow is unsteady and laminar. The incompressible Navier-
Stokes equation has been applied for the two-dimensional flow. The Boussinesq
approximation has been applied to consider the density variation. Conservation laws
of mass, momentum, and energy control the system behavior, which has been mod-
eled through the accompanying mathematical equations. From the above-stated
assumptions of the two-dimensional fluid flow field we can write

o) 8(Ug) d(Ve) 8 (. dp\ 8 (.. d¢
ot Tax "oy —ox\leax) Tarleay) TS (1)

Here, dependent nondimensional variables are designated by ¢, and the correspond-
ing diffusion and source term are defined by I', and S, respectively: they are
summarized in Table 1.
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Figure 1. Schematic view of the triangular-shaped cavity with the boundary conditions.

The density of the nanofluid, which is assumed to be constant, can be
expressed as

Pnf = (l - d))pj + ¢'pc (2)

Table 1. Summary of governing nondimensional equations [37]

Equation ¢ ry S,

Continuity 1 0 0

U momentum U Ung/ Purlty —aP/eX

J momentum V Unf/ Prrdty —0P /DY + [(pPlur/(purfr)]Ra Pr O
Energy ] o o/ U 0




In the above equation, the solid volume fraction (¢) has significant effect on heat
transfer, and the thermal diffusivity of the nanofluid, which is quite different from
that of a conventional fluid, can be expressed as

Jens
Onf = ﬁ 3)
where the heat capacitance of the nanofluid (pe,)nr can be found by
(Pep) o= (1 = ) (pey) +b(pcy), (4)
In addition, the thermal expansion coefficient (pp)ar of the nanofluid is
(PB)or= (1= &)(pB),+d(pB), ()
Moreover, the dynamic viscosity (p,r) of the nanofluid can be expressed as
b = ©)
The effective thermal conductivity of the nanofluid can be described as
kot _ ks + 2kr — 29 (ks — k) )
kp o kg + 2kp + d(kp — k_‘)

where the thermal conductivity of the nanoparticles is k£, and the thermal conduc-
tivity of the base fluid is k.

Scaling which has been carried out to obtain the nondimensional governing
equations is presented in Eq. (8):

o yo2 oy oo, ML
L L L- L’lf le
+ prgy)L? T-T. LT, —T.
p_ P p;g{) 0 ( ) Ra LT T 5 v g
Puf OLf (T — T) oy vy o

In the above equations, 0 is nondimensional temperature. Rayleigh number and
Prandtl number are designated by Ra and Pr, respectively.

Initial and boundary conditions in dimensionless form for the present
problems can be defined by

=10
Entire domain: U=V =0,0=0
>0 (9a)

On the base wall : U = V = 0,0 = 4 sin’(21X) (9b)



Table 2. Thermophysical properties of water and nanoparticles [21]

Property Water Cu AlLO; TiO,

e, J/kgK) 4179 385 765 686.2

p (kg/m?) 997.1 8.933 3,970 4,250

K (W/mK) 0.613 400 40 8.9538

B (1/K) 2.1 x107* 1.67x107° 0.85%107° 0.9x107°
On thesidewalls: U =1V =0,0=0 (9¢)

Average Nusselt number has been evaluated for the bottom horizontal heated
surface and calculated from the following expression:

Nug = — 2 [ —dX (10)

Streamfunction \ is a mathematical trick which has been introduced to represent the
fluid motion. Streamfunction has been defined from velocity components U and V.
The relation between the streamfunction and the velocity component for a two-
dimensional flow is given by

o

l’:— =
v oY oX

(11)

2.3. Thermophysical Properties of the Nanofluid

Different types of nanofluid have been studied for the present work, and most
of them are highly used in the commercial case due to their availability and economic
considerations. Analysis has been performed for water-CuO, water-Al,O;, and
water-TiO, nanofluids. These nanofluids are being used extensively commercially
due to their improved thermophysical properties. The thermophysical properties
of these nanofluids are presented in Table 2 [21]. Beside these nanofluids, other
new nanofluids are now coming into focus. Among them, graphene-water, CNT
(carbon nanotube)-water, diamond-water, and Ag-water are very common, but these
nanofluids are costly. The solid volume fraction of the nanofluid plays a significant
role in heat transfer augmentation, and heat transfer using nanofluids is a very
complex mechanism.

3. NUMERICAL PROCEDURE AND CODE VALIDATION

The Galerkin weighted residual finite element method (FEM) has been applied
to the present problem to obtain a numerical solution. The Boussinesq approxi-
mation has been applied to consider variation of density. The entire geometry has
been discretized into several elements using a triangular mesh method. Governing
equations with initial and boundary conditions have been applied to these elements
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Figure 2. Validation of the present code against the results of Ghasemi and Aminossadati [37].

to obtain a set of algebraic equations. Iteration technique has been applied to solve
these algebraic linear equations parametrically for the entire domain applying proper
boundary condition. The convergeuce criterion of the numerical solution along with
error estimation has been set to |(p’”+' — ™ <107, where ¢ is the general depen-
dent variable and m is the number of iteration.

Code validation of the present work has been done to check the accuracy of the
present code with the established literature. The details of the code validation are
presented in Figure 2. The present work is compared with that of Ghasemi and
Aminossadati [37] in light of average Nusselt number. From the figure, it is evident
that the present work is completely in par with the previously established literature.
So, the present numerical code and solution procedure are completely reliable, and
so is the numerical solution.
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Figure 3. Grid independence study with 1=0.1, ¢ =0.05, and Ra=10® for CuO-water.



4. GRID INDEPENDENCE TEST

A grid independence test for the present problem has been performed for dif-
ferent element numbers to test the numerical accuracy of the present work. When the
grid element number is increased, the numerical solution becomes more accurate but,
due to computational limitations, obtaining an independent grid can save time and
computational effort. The result of the grid independence test is presented in the
Figure 3. Grid independence study has been carried out for dimensionless time
t=0.1, solid volume fraction ¢ =0.05, and Ra= 10® with CuO-water nanofluid. Tt
has been performed on the basis of average Nusselt number. Different grids of
element numbers 1,242, 2.620, 3,206, 4,628, and 5.420 have been checked, and it is
clear from the figure that for the element numbers 1,242 and 2,620, the Nusselt num-
ber does not vary. Again, with the addition of more elements, for example, at 3,206,
Nusselt number changes significantly. When the element number is set to 4,628, it
becomes more or less constant for further increment of elements (such as 5,420).
So, the entire solution process becomes independent of the grid when the element
number is set to 4,628 for the numerical solution. Thus, a grid having 4,628 elements
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Figure 4. Effect of solid volume fraction on streamlines for the selected values of t with Ra=10°
(CuO-water).



has been considered as an independent grid, and the whole numerical simulation is
performed taking it as the grid element distribution.

5. RESULTS AND DISCUSSION

In the present article, numerical calculations were carried out with the help of
finite-element analysis. A set of differential equations was solved by a sophisticated
algorithm which has been verified. Results are presented through streamline and iso-
therm contours along with necessary plots. The present research deals with a special
kind of boundary condition which has not been explored widely but is of immense
practical importance. So, effort was given to include in the research output as much
detail as possible.

5.1. Effect of Solid Volume Fraction on Streamline Contours

Figures 4-7 exhibit the effect of solid volume fraction of nanoparticles in the
base fluid on the streamline contours at different values of T and Rayleigh number.
From the nondimensional parameters’ definitions, it is evident that higher values of
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Figure 5. Effect of solid volume fraction on streamlines for the selected values of t with Ra=10°
(CuO-water).
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Figure 6. Effect of solid volume fraction on streamlines for the selected values of t with Ra=10’
(CuO-water).

Ra obviously increase the intensity of convection. However, the most interesting
point here is to observe how the amount of nanoparticles affects the convection.

There is a very obvious pattern in the formation of vortices inside the enclosure
for every case at t=0.1 and for Ra= 10> to Ra= 10". There are more or less always
four cells formed in a symmetric manner. Two larger cells are near the middle of the
enclosure and have comparable strengths. However, they rotate opposite to each
other. Besides these two primary cells, there are two other symmetrically formed sec-
ondary cells or eddies at the two corners near the bottom wall. The convective
streamline pattern is due to the boundary conditions which have been applied to
the enclosure. Since t=0.1, which means the process is still in its initial stage, the
vortices are still not stabilized and hence almost always have a higher value of
streamfunction than that of t = 1. Another important change in the streamline pat-
terns is that there are two smaller cells at the top of the enclosure with opposite sense
of rotation, and these cells are very weak. First, if the reason for this streamline pat-
tern is investigated, it would be apparent that the boundary condition (temperature)
at the heated bottom wall is a sine-squared function, which indicates that, along the
boundary line, the temperature will reach its peak twice and there will be a base in
between. As a result, two major cells are formed inside the enclosure. And the strong
local convection results in the two eddies that can be seen near the corners.
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