Blue phase liquid crystal: Strategies for phase stabilization and device development

Rahman, M.D.A. and Said, S.M. and Balamurugan, S. (2015) Blue phase liquid crystal: Strategies for phase stabilization and device development. Science and Technology of Advanced Materials, 16 (3). p. 21. ISSN 1468-6996, DOI https://doi.org/10.1088/1468-6996/16/3/033501.

[img]
Preview
PDF (Blue phase liquid crystal: strategies for phase stabilization and device development)
Blue_phase_liquid_crystal_strategies_for_phase_stabilization.pdf - Published Version

Download (2MB)
Official URL: http://iopscience.iop.org/1468-6996/16/3/033501/pd...

Abstract

The blue phase liquid crystal (BPLC) is a highly ordered liquid crystal (LC) phase found very close to the LC-isotropic transition. The BPLC has demonstrated potential in next-generation display and photonic technology due to its exceptional properties such as sub-millisecond response time and wide viewing angle. However, BPLC is stable in a very small temperature range (0.5-1 degrees C) and its driving voltage is very high (similar to 100 V). To overcome these challenges recent research has focused on solutions which incorporate polymers or nanoparticles into the blue phase to widen the temperature range from around few degrees C to potentially more than 60 degrees C. In order to reduce the driving voltage, strategies have been attempted by modifying the device structure by introducing protrusion or corrugated electrodes and vertical field switching mechanism has been proposed. In this paper the effectiveness of the proposed solution will be discussed, in order to assess the potential of BPLC in display technology and beyond.

Item Type: Article
Funders: University of Malaya-Ministry of Higher Education UM.C/625/1/HR/MOHE/ENG/29 , University of Malaya RP003D/13AET 06/01/03/SF0831 FP011-2014A
Additional Information: ISI Document Delivery No.: CM1EQ Times Cited: 0 Cited Reference Count: 180 Cited References: Alexander G P, 2008, THESIS U OXFORD Alexander GP, 2009, LIQ CRYST, V36, P1215, DOI 10.1080/02678290903057390 Anisimov MA, 1998, PHYS REV E, V57, P582, DOI 10.1103/PhysRevE.57.582 Arora S. L., 1970, Molecular Crystals and Liquid Crystals, V10, DOI 10.1080/15421407008082813 BARBETMASSIN R, 1984, PHYS REV A, V30, P1161, DOI 10.1103/PhysRevA.30.1161 Barbet-Massin R, 1985, J PHYS C SOLID STATE, V46, P799 Belyakov V. A., 1985, Soviet Physics - Uspekhi, V28, DOI 10.1070/PU1985v028n07ABEH003870 Cao WY, 2002, NAT MATER, V1, P111, DOI 10.1038/nmat727 Castles F, 2014, NAT MATER, V13, P817, DOI 10.1038/nmat3993, 10.1038/NMAT3993 Castles F, 2012, NAT MATER, V11, P599, DOI 10.1038/nmat3330, 10.1038/NMAT3330 Chen HY, 2013, J APPL PHYS, V113, DOI 10.1063/1.4797492 Chen HS, 2012, OPT MATER EXPRESS, V2, P1149 Chen HY, 2013, OPT EXPRESS, V21, P9774, DOI 10.1364/OE.21.009774 Chen KM, 2011, J DISP TECHNOL, V7, P362, DOI 10.1109/JDT.2011.2153177 Chen KM, 2010, J DISP TECHNOL, V6, P49, DOI 10.1109/JDT.2009.2037981 CHEN NR, 1987, PHYS REV A, V35, P4886, DOI 10.1103/PhysRevA.35.4886 Chen Y, 2013, APPL PHYS LETT, V102, DOI 10.1063/1.4802090 Chen Y, 2011, APPL PHYS LETT, V99, DOI 10.1063/1.3662391 Chen Y, 2014, J APPL POLYM SCI, V131, DOI 10.1002/app.40556 Chen Y, 2013, APPL PHYS LETT, V102, DOI 10.1063/1.4803922 Chen YQ, 2011, LIQ CRYST, V38, P555, DOI 10.1080/02678292.2011.558216 Cheng HC, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3604011 Chigrinov V G, 1979, SOV PHYS JETP, V50, P994 Choi H, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3564896 Choi H, 2011, SOFT MATTER, V7, P4252, DOI 10.1039/c1sm05098b Choi SW, 2008, APPL PHYS LETT, V92, DOI 10.1063/1.2838352 Chojnowska O, 2012, PHOTON LETT POLAND, V4, P81 Chojnowska O, 2014, J APPL PHYS, V116, DOI 10.1063/1.4903551 Chojnowska O, 2013, LIQ CRYST, V41, P15 Chou K H, 2012, SID S, V43, P1397 COATES D, 1973, PHYS LETT A, VA 45, P115, DOI 10.1016/0375-9601(73)90448-9 Coles H, 2010, NAT PHOTONICS, V4, P676, DOI 10.1038/NPHOTON.2010.184 Coles HJ, 2009, PROC SPIE, V7414, DOI 10.1117/12.831230 Coles HJ, 2005, NATURE, V436, P997, DOI 10.1038/nature003932 Collings P J, 1997, HDB LIQUID CRYSTAL R, P99 Crooker PP, 2001, PART ORDER, P186 Dierking I, 2012, SOFT MATTER, V8, P4355, DOI 10.1039/c2sm07155j Dierking I, 2010, POLYM CHEM-UK, V1, P1153, DOI 10.1039/c0py00087f Dierking I, 2014, SYMMETRY-BASEL, V6, P444, DOI 10.3390/sym6020444 Dolganov VK, 1997, J PHYS II, V7, P1, DOI 10.1051/jp2:1997111 DUBOISVIOLETTE E, 1988, MOL CRYST LIQ CRYST, V165, P151, DOI 10.1080/00268948808082200 Englert J, 1998, PHYS REV LETT, V81, P1457, DOI 10.1103/PhysRevLett.81.1457 Etchegoin P, 2000, PHYS REV E, V62, P1435, DOI 10.1103/PhysRevE.62.1435 Fan C Y, 2011, SID INT S DIGEST TEC, V42, P213 Fergason J L, 1975, United States Patent, Patent No. 3918796 Fergason J L, 1973, United States Patent, Patent No. 03731986 FERGASON JL, 1970, ELECTRO-TECHNOL, V85, P41 Friedel G., 1922, Annales de Physique, V18 Ge ZB, 2009, APPL PHYS LETT, V94, DOI 10.1063/1.3097355 Ge ZB, 2009, J DISP TECHNOL, V5, P250, DOI 10.1109/JDT.2009.2022849 GERBER PR, 1985, MOL CRYST LIQ CRYST, V116, P197, DOI 10.1080/00268948508074573 GLEESON HF, 1989, LIQ CRYST, V5, P917, DOI 10.1080/02678298908026398 Gogoi B, 2003, LIQ CRYST, V30, P931, DOI 10.1080/0267829031000136066 Gogoi B, 2005, CRYST RES TECHNOL, V40, P709, DOI 10.1002/crat.200410413 Gogoi B, 2002, CRYST RES TECHNOL, V37, P1331, DOI 10.1002/crat.200290010 GORMAN JW, 1985, PHYS REV A, V31, P910, DOI 10.1103/PhysRevA.31.910 Haseba Y, 2006, J SOC INF DISPLAY, V14, P551, DOI 10.1889/1.2210806 Haseba Y, 2013, SID INT S, V44, P254 Haseba Y, 2005, ADV MATER, V17, P2311, DOI 10.1002/adma.200500042 He WL, 2009, ADV MATER, V21, P2050, DOI 10.1002/adma.200802927 HEILMEIER GH, 1976, IEEE T ELECTRON DEV, V23, P780, DOI 10.1109/T-ED.1976.18482 HEILMEIE.GH, 1968, PR INST ELECTR ELECT, V56, P1162, DOI 10.1109/PROC.1968.6513 HEILMEIE.GH, 1969, MOL CRYST LIQ CRYST, V8, P293, DOI 10.1080/15421406908084910 SCHADT M, 1971, APPL PHYS LETT, V18, P127, DOI 10.1063/1.1653593 HELFRICH W, 1969, J CHEM PHYS, V51, P4092, DOI 10.1063/1.1672632 Henrich O, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.107801 HEPPKE G, 1989, J PHYS-PARIS, V50, P2991, DOI 10.1051/jphys:0198900500190299100 HEPPKE G, 1985, MOL CRYST LIQ CRYST, V2, P59 Heppke G, 1988, United States Patent, Patent No. 4767194 HEPPKE G, 1990, LIQ CRYST, V8, P407, DOI 10.1080/02678299008047356 Hisakado Y, 2005, ADV MATER, V17, P96, DOI 10.1002/adma.200400639 HORNREICH RM, 1981, PHYS LETT A, V82, P345, DOI 10.1016/0375-9601(81)90912-9 HORNREICH RM, 1991, PHYS REV LETT, V67, P2155, DOI 10.1103/PhysRevLett.67.2155 HORNREICH RM, 1988, MOL CRYST LIQ CRYST, V165, P183, DOI 10.1080/00268948808082201 HORNREICH RM, 1994, PHYS REV B, V49, P10914, DOI 10.1103/PhysRevB.49.10914 Hussain Z, 2011, J APPL PHYS, V109, DOI 10.1063/1.3592268 Hwang J Y, 2012, SID S DIGEST TECHNIC, V43, P109 Imrie C, 1999, LIQUID CRYSTALS 2, V95, P149, DOI 10.1007/3-540-68118-3_4 Iwamochi H, 2010, CHEM LETT, V39, P170, DOI 10.1246/cl.2010.170 Iwata T, 2009, LIQ CRYST, V36, P947, DOI 10.1080/02678290903165482 Iwata T, 2007, MOL CRYST LIQ CRYST, V470, P11, DOI 10.1080/15421400701492374 Jamee P, 2000, PHYS REV E, V62, P3687, DOI 10.1103/PhysRevE.62.3687 Jeong HC, 2012, J MATER CHEM, V22, P4627, DOI 10.1039/c2jm16650j Jiao MZ, 2010, APPL PHYS LETT, V96, DOI 10.1063/1.3290253 Jin Yan, 2011, Journal of Display Technology, V7, DOI 10.1109/JDT.2011.2159091 JOHNSON DL, 1980, PHYS REV LETT, V45, P641, DOI 10.1103/PhysRevLett.45.641 Joshi T, 2010, APPL PHYS LETT, V96, DOI 10.1063/1.3455325 Karatairi E, 2010, PHYS REV E, V81, DOI 10.1103/PhysRevE.81.041703 Kato T, 2008, STRUCT BOND, V128, P1, DOI 10.1007/978-3-540-77867-7 Kawamoto H, 2002, P IEEE, V90, P460, DOI 10.1109/JPROC.2002.1002521 Kikuchi H, 2009, 2009 SID INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPERS, VOL XL, BOOKS I - III, P578 Kikuchi H, 2002, NAT MATER, V1, P64, DOI 10.1038/nmat712 Kikuchi H, 2008, STRUCT BOND, V128, P99, DOI 10.1007/430_2007_075 Kikuchi H, 2007, SID INT SYMP DIG TEC, V38, P1737, DOI 10.1889/1.2785662 Kim MS, 2010, J PHYS D APPL PHYS, V43, DOI 10.1088/0022-3727/43/14/145502 Kimura M, 2013, OPT MATER EXPRESS, V3, P2086, DOI 10.1364/OME.3.002086 KITZEROW HS, 1991, PHYS REV LETT, V67, P2151, DOI 10.1103/PhysRevLett.67.2151 Kitzerow HS, 2010, FERROELECTRICS, V395, P66, DOI 10.1080/00150191003683807 Kitzerow HS, 1991, MOL CRYST LIQ CRYST, V202, P51, DOI 10.1080/00268949108035659 KITZEROW HS, 1993, LIQ CRYST, V14, P911, DOI 10.1080/02678299308027768 Kogawa Y, 2011, J MATER CHEM, V21, P19132, DOI 10.1039/c1jm13299g KOISTINEN EP, 1995, PHYS REV LETT, V74, P4460, DOI 10.1103/PhysRevLett.74.4460 Kuan-Ming Chen, 2010, Journal of Display Technology, V6, DOI 10.1109/JDT.2010.2055039 Kuan-Ming Chen, 2010, Journal of Display Technology, V6, DOI 10.1109/JDT.2009.2037981 Kubota D, 2011, SID S, V42, P125 Kutnjak Z, 1996, PHYS REV E, V53, P4955, DOI 10.1103/PhysRevE.53.4955 Le KV, 2011, J MATER CHEM, V21, P2855, DOI 10.1039/c0jm04009f Lee H., 2011, SID INT S, V1, P121 Li Y, 2011, OPT EXPRESS, V19, P8045, DOI 10.1364/OE.19.008045 Li Y, 2011, J DISP TECHNOL, V7, P359, DOI 10.1109/JDT.2011.2141115 Lin CH, 2011, OPT LETT, V36, P502, DOI 10.1364/OL.36.000502 Lin YH, 2010, APPL PHYS LETT, V96, DOI 10.1063/1.3360860 Liu LW, 2011, J SOC INF DISPLAY, V19, P547, DOI 10.1889/JSID19.8.547 Liu YF, 2014, J DISP TECHNOL, V10, P3, DOI 10.1109/JDT.2013.2292051 Liu YF, 2014, LIQ CRYST, V41, P1339, DOI 10.1080/02678292.2014.920055 Lu SY, 2010, OPT LETT, V35, P562, DOI 10.1364/OL.35.000562 Lubensky TC, 1996, PHYS REV E, V53, P714, DOI 10.1103/PhysRevE.53.714 MEIBOOM S, 1981, PHYS REV LETT, V46, P1216, DOI 10.1103/PhysRevLett.46.1216 MEIBOOM S, 1983, PHYS REV A, V27, P438, DOI 10.1103/PhysRevA.27.438 MEIBOOM S, 1983, PHYS REV A, V28, P3553, DOI 10.1103/PhysRevA.28.3553 MEIBOOM S, 1980, PHYS REV LETT, V44, P882, DOI 10.1103/PhysRevLett.44.882 Mizunuma T, 2011, OPT MATER EXPRESS, V1, P1561 Said SM, 2014, PROC SPIE, V9182, DOI 10.1117/12.2060785 Oo TN, 2011, OPT MATER EXPRESS, V1, P1502 Palik E D, 1997, HDB OPTICAL CONSTANT, V1985, P597 Pieranski P, 2001, PART ORDER, P28 Qi H, 2008, J MATER CHEM, V18, P3288, DOI 10.1039/b718920f Rahman MA, 2015, MOL CRYST LIQ CRYST, V608, P82, DOI 10.1080/15421406.2014.949600 Rao L, 2014, LIQ CRYST TODAY, V24, P3 Rao LH, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3559614 Rao LH, 2010, J SOC INF DISPLAY, V18, P954, DOI 10.1889/JSID18.11.954 Rao LH, 2009, APPL PHYS LETT, V95, DOI 10.1063/1.3271771 Rao LH, 2011, J DISP TECHNOL, V7, P627, DOI 10.1109/JDT.2011.2164513 Rao LH, 2010, J DISP TECHNOL, V6, P287, DOI 10.1109/JDT.2010.2053519 Ravnik M, 2011, P NATL ACAD SCI USA, V108, P5188, DOI 10.1073/pnas.1015831108 Ravnik M, 2010, FARADAY DISCUSS, V144, P159, DOI 10.1039/b908676e Reinitzer F, 1888, MONATSH CHEM, V9, P421, DOI DOI 10.1007/BF01516710 Roži� B, 2011, Eur Phys J E Soft Matter, V34, P1, DOI 10.1140/epje/i2011-11017-8 Sato M, 2007, ADV MATER, V19, P4145, DOI 10.1002/adma.200700903 SAUPE A, 1969, MOL CRYST LIQ CRYST, V7, P59, DOI 10.1080/15421406908084865 Sethna J, 1987, THEORY APPL LIQUID C, V5, P305 SETHNA JP, 1985, PHYS REV B, V31, P6278, DOI 10.1103/PhysRevB.31.6278 Shiraishi Y, 2012, ISR J CHEM, V52, P908, DOI 10.1002/ijch.201200031 Sluckin TJ, 2004, CRYSTALS FLOW CLASSI Stamatoiu O, 2012, TOP CURR CHEM, V318, P331, DOI 10.1007/128_2011_233 STEGEMEYER H, 1986, LIQ CRYST, V1, P3, DOI 10.1080/02678298608086486 Sun Y, 2014, J DISP TECHNOL, V10, P797, DOI DOI 10.1109/JDT.2014.2321183 Sun YB, 2014, LIQ CRYST, V41, P717, DOI 10.1080/02678292.2013.878961 Taushanoff S, 2010, J MATER CHEM, V20, P5893, DOI 10.1039/c0jm00690d Tu CD, 2013, J DISP TECHNOL, V9, P3, DOI 10.1109/JDT.2012.2229694 Wang L, 2012, J MATER CHEM, V22, P19629, DOI 10.1039/c2jm34013e Wang L, 2013, J MATER CHEM C, V1, P6526, DOI 10.1039/c3tc31253d Wang L, 2012, SMALL, V8, P2189, DOI 10.1002/smll.201200052 Washizuka I, 1991, United States Patent, Patent No. 5058996 Weinberger P, 2008, PHIL MAG LETT, V88, P897, DOI 10.1080/09500830802526604 Wittek M, 2012, SID INT S, V43, P25, DOI 10.1002/j.2168-0159.2012.tb05699.x Wong JM, 2011, SOFT MATTER, V7, P7956, DOI 10.1039/c1sm05764b WRIGHT DC, 1989, REV MOD PHYS, V61, P385, DOI 10.1103/RevModPhys.61.385 Xu DM, 2014, APPL PHYS LETT, V105, DOI 10.1063/1.4894727 Xu DM, 2014, APPL PHYS LETT, V105, DOI 10.1063/1.4890031 Xu DM, 2013, OPT EXPRESS, V21, P24721, DOI 10.1364/OE.21.024721 Yabu S, 2011, OPT LETT, V36, P3578, DOI 10.1364/OL.36.003578 Yan J, 2013, J APPL PHYS, V114, DOI 10.1063/1.4821968 Yan J, 2011, J MATER CHEM, V21, P7870, DOI 10.1039/c1jm10711a Yan J, 2011, OPT LETT, V36, P1404, DOI 10.1364/OL.36.001404 Yan J, 2010, APPL PHYS LETT, V96 Yan J, 2011, OPT MATER EXPRESS, V1, P1527 Yan J, 2013, APPL PHYS LETT, V102 Yang D. K., 2006, FUNDAMENTALS LIQUID Yang D K, 2014, FUNDAMENTALS LIQUID, P477 Yokoyama S, 2006, ADV MATER, V18, P48, DOI 10.1002/adma.20051355 Yoon S, 2010, LIQ CRYST, V37, P201, DOI 10.1080/02678290903494601 Yoshida H, 2013, OPT MATER EXPRESS, V3, P842, DOI 10.1364/OME.3.000842 Yoshida H, 2009, APPL PHYS EXPRESS, V2, DOI 10.1143/APEX.2.121501 Yoshizawa A, 2011, APPL PHYS EXPRESS, V4, DOI 10.1143/APEX.4.101701 Yoshizawa A, 2009, J MATER CHEM, V19, P5759, DOI 10.1039/b902898f Yoshizawa A, 2005, J MATER CHEM, V15, P3285, DOI 10.1039/b506167a Yoshizawa A, 2008, J SOC INF DISPLAY, V16, P1189, DOI 10.1889/JSID16.12.1189 Yoshizawa A, 2013, RSC ADV, V3, P25475, DOI 10.1039/c3ra43546f Zheng ZG, 2010, NEW J PHYS, V12, DOI 10.1088/1367-2630/12/11/113018 Rahman, M. D. Asiqur Said, Suhana Mohd Balamurugan, S. Engineering, Faculty /I-7935-2015 Engineering, Faculty /0000-0002-4848-7052 University of Malaya-Ministry of Higher Education UM.C/625/1/HR/MOHE/ENG/29; University of Malaya RP003D/13AET, 06/01/03/SF0831, FP011-2014A This study was supported by the University of Malaya-Ministry of Higher Education Grant, UM.C/625/1/HR/MOHE/ENG/29, University of Malaya Research Grant (UMRG), RP003D/13AET, University of Malaya Science Fund, 06/01/03/SF0831, and Fundamental Research Grant Scheme, FP011-2014A. 0 IOP PUBLISHING LTD BRISTOL SCI TECHNOL ADV MAT
Uncontrolled Keywords: Blue phase liquid crystal, kerr effect, electrode architecture, polymer stabilization, nanoparticles addition, wide temperature-range, isotropic critical-point, low-voltage, electrooptical properties, refractive-index, polymer, displays, transition, field, kerr,
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 10 Jun 2016 00:12
Last Modified: 10 Jun 2016 00:12
URI: http://eprints.um.edu.my/id/eprint/15847

Actions (login required)

View Item View Item