Self-organized TiO2 nanotube layer on Ti–6Al–7Nb for biomedical application

Rafieerad, A.R. and Zalnezhad, E. and Bushroa, A.R. and Hamouda, A.M.S. and Sarraf, M. and Nasiri-Tabrizi, B. (2015) Self-organized TiO2 nanotube layer on Ti–6Al–7Nb for biomedical application. Surface and Coatings Technology, 265. pp. 24-31. ISSN 0257-8972, DOI https://doi.org/10.1016/j.surfcoat.2015.01.067.

[img]
Preview
PDF (Self-organized TiO2 nanotube layer on Ti–6Al–7Nb for biomedical application)
Self-organized_TiO2_nanotube_layer_on_Ti–6Al–7Nb_for_biomedical_application.pdf - Published Version

Download (1MB)
Official URL: http://www.sciencedirect.com/science/article/pii/S...

Abstract

In the present study, a self-organized nanotube TiO2 layer on Ti-6Al-7Nb was fabricated. The influence of acidic electrolytes including glycerol (G) and ethylene glycol (EG) on the anodization, microstructural features and surface wettability was explored. The phase compositions and morphological characteristics were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. According to the results, due to the intrinsic amorphous feature of ceramic oxide, the characteristic TiO2 peaks were not detected in the XRD profiles. After annealing in normal atmosphere at 600 degrees C for 2 h, TiO2 crystallized and consequently, nanotubular TiO2 arrays containing anatase and rutile phases formed. From a microstructural point of view, the average length and diameter of the nanotube array ranged from 2.23 to 4.22 mu m and 160 to 170 nm, respectively. Besides, the type of acidic electrolyte and subsequent annealing noticeably affected the surface wettability of the products. (C) 2015 Elsevier B.V. All rights reserved.

Item Type: Article
Funders: UM TNC2/RC/261/1/1/RP021C-13AET , HIR UM.C/HIR/MOHE/ENG/27
Additional Information: ISI Document Delivery No.: CF6MB Times Cited: 1 Cited Reference Count: 38 Cited References: Aronov D, 2007, J EUR CERAM SOC, V27, P4181, DOI 10.1016/j.jeurceramsoc.2007.02.121 Baradaran S, 2013, J MECH BEHAV BIOMED, V20, P272, DOI 10.1016/j.jmbbm.2013.01.020 Crawford GA, 2007, ACTA BIOMATER, V3, P359, DOI 10.1016/j.actbio.2006.08.004 Ducheyne P, 1999, BIOMATERIALS, V20, P2287, DOI 10.1016/S0142-9612(99)00181-7 DUNN D, 1992, SURF COAT TECH, V50, P223, DOI 10.1016/0257-8972(92)90005-U Geetha M, 2009, PROG MATER SCI, V54, P397, DOI 10.1016/j.pmatsci.2008.06.004 He ZR, 2014, APPL SURF SCI, V313, P633, DOI 10.1016/j.apsusc.2014.06.035 Hedzelek W., 2005, PHYSICOCHEM PROBL MI, V39, P149 Jonasova L, 2004, BIOMATERIALS, V25, P1187, DOI 10.1016/j.biomaterials.2003.08.009 Kao M., 2005, J PHYS C SERIES, P442 KOBAYASHI K, 1988, J ELECTROCHEM SOC, V135, P908, DOI 10.1149/1.2095826 Kummer KM, 2012, NANOSCI NANOTECH LET, V4, P483, DOI 10.1166/nnl.2012.1352 Kunze J, 2008, ELECTROCHIM ACTA, V53, P6995, DOI 10.1016/j.electacta.2008.01.027 Lockman Z, 2010, J ALLOY COMPD, V503, P359, DOI 10.1016/j.jallcom.2009.12.093 Macak JM, 2005, J BIOMED MATER RES A, V75A, P928, DOI 10.1002/jbm.a.30501 Maiyalagan T, 2006, B MATER SCI, V29, P705 Meng XQ, 2005, CHEM PHYS LETT, V413, P450, DOI 10.1016/j.cplett.2005.08.039 Mor GK, 2003, J MATER RES, V18, P2588, DOI 10.1557/JMR.2003.0362 Narayanan R, 2007, CORROS SCI, V49, P542, DOI 10.1016/j.corsci.2006.06.021 Oh S, 2006, MAT SCI ENG C-BIO S, V26, P1301, DOI 10.1016/j.msec.2005.08.014 Petukhov DI, 2008, MICROPOR MESOPOR MAT, V114, P440, DOI 10.1016/j.micromeso.2008.01.033 Prida VM, 2007, J MAGN MAGN MATER, V316, P110, DOI 10.1016/j.jmmm.2007.02.021 Rahmanian O, 2012, LANGMUIR, V28, P12923, DOI 10.1021/la302704t Raja KS, 2005, MATER LETT, V59, P2137, DOI 10.1016/j.matlet.2005.01.084 Raja KS, 2005, ELECTROCHIM ACTA, V51, P154, DOI 10.1016/j.electacta.2005.04.011 Saharudin K.A., 2012, J NANOSCI NANOTECHNO, V12, P1 Semlitsch M., 1987, CLIN MATER, V2, P1, DOI DOI 10.1016/0267-6605(87)90015-1 SHIRKHANZADEH M, 1992, J MATER SCI-MATER M, V3, P322, DOI 10.1007/BF00705362 Sobieszczyk S., 2009, ADV MAT SCI, V9, P25 Varghese OK, 2003, J MATER RES, V18, P156, DOI 10.1557/JMR.2003.0022 Variola F, 2008, BIOMATERIALS, V29, P1285, DOI 10.1016/j.biomaterials.2007.11.040 Wang H, 2008, APPL SURF SCI, V254, P5599, DOI 10.1016/j.apsusc.2008.03.004 Wang J, 2009, J PHYS CHEM C, V113, P4026, DOI 10.1021/jp811201x Yang BC, 2004, BIOMATERIALS, V25, P1003, DOI 10.1016/S0142-9612(03)00626-4 Young T., 1805, PHILOS T R SOC LONDO, V95, P65, DOI DOI 10.1098/RSTL.1805.0005 Yu WQ, 2009, BIOMED MATER, V4, DOI 10.1088/1748-6041/4/6/065012 Yu XF, 2008, SENSOR ACTUAT B-CHEM, V130, P25, DOI 10.1016/j.snb.2007.07.076 Zhang WY, 2007, T NONFERR METAL SOC, V17, pS692 Rafieerad, A. R. Zalnezhad, E. Bushroa, A. R. Hamouda, A. M. S. Sarraf, M. Nasiri-Tabrizi, B. Engineering, Faculty /I-7935-2015 Engineering, Faculty /0000-0002-4848-7052 University of Malaya UM TNC2/RC/261/1/1/RP021C-13AET, HIR UM.C/HIR/MOHE/ENG/27 The authors would like to acknowledge the University of Malaya for providing the necessary facilities and resources for this research. This work has been supported by the University of Malaya, grant Nos.: UM TNC2/RC/261/1/1/RP021C-13AET and HIR UM.C/HIR/MOHE/ENG/27. 1 ELSEVIER SCIENCE SA LAUSANNE SURF COAT TECH
Uncontrolled Keywords: Anodization, Ti-6Al-7Nb, TiO2 nanotube, Surface wettability, deformation-behavior, biomimetic apatite,, titania nanotubes, arrays, fabrication, anodization, growth, oxidation, aluminum, surfaces
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 10 Jun 2016 00:11
Last Modified: 19 Mar 2019 07:27
URI: http://eprints.um.edu.my/id/eprint/15846

Actions (login required)

View Item View Item