Engineering artificial machines from designable DNA materials for biomedical applications

Qi, H. and Huang, G.Y. and Han, Y.L. and Zhang, X.H. and Li, Y.H. and Pingguan-Murphy, Belinda and Lu, T.J. and Xu, F. and Wang, L. (2015) Engineering artificial machines from designable DNA materials for biomedical applications. Tissue Engineering Part B-Reviews, 21 (3). pp. 288-297. ISSN 1937-3368, DOI https://doi.org/10.1089/ten.TEB.2014.0494.

[img]
Preview
PDF (Engineering Artificial Machines from Designable DNA Materials for Biomedical Applications)
Engineering_Artificial_Machines_from_Designable_DNA_Materials_for_Biomedical_Applications.pdf - Published Version

Download (1MB)
Official URL: http://www.ncbi.nlm.nih.gov/pubmed/25547514

Abstract

Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.

Item Type: Article
Funders: National Natural Science Foundation of China 11372243 , Major International Joint Research Program of China 11120101002 , Key (Key grant) Project of Chinese Ministry of Education 313045 , International Science & Technology Cooperation Program of China 2013DFG02930 , Key Program for International S&T Cooperation Projects of Shaanxi 2014KW12-01 , China Postdoctoral Science Foundation 2013 M532054 , China Young 1000-Talent Program and Program for New Century Excellent Talents in University NCET-12-0437 , Ministry of Higher Education (MOHE), Government of Malaysia UM.C/HIR/MOHE/ENG/44
Additional Information: ISI Document Delivery No.: CI5DT Times Cited: 0 Cited Reference Count: 120 Cited References: Aldaye FA, 2006, ANGEW CHEM INT EDIT, V45, P2204, DOI 10.1002/anie.200502481 Alexander CM, 2011, CHEM COMMUN, V47, P3418, DOI 10.1039/c0cc04916f Alivisatos AP, 1996, NATURE, V382, P609, DOI 10.1038/382609a0 Andersen ES, 2009, NATURE, V459, P73, DOI 10.1038/nature07971 Anne A, 2003, J AM CHEM SOC, V125, P1112, DOI 10.1021/ja028640k Auyeung E, 2014, NATURE, V505, P73, DOI 10.1038/nature12739 Bath J, 2007, NAT NANOTECHNOL, V2, P275, DOI 10.1038/nnano.2007.104 Bayley H, 2001, NATURE, V413, P226, DOI 10.1038/35093038 Branton D, 2008, NAT BIOTECHNOL, V26, P1146, DOI 10.1038/nbt.1495 Bui H, 2010, NANO LETT, V10, P3367, DOI 10.1021/nl101079u CARDULLO RA, 1988, P NATL ACAD SCI USA, V85, P8790, DOI 10.1073/pnas.85.23.8790 Castro CE, 2011, NAT METHODS, V8, P221, DOI 10.1038/nmeth.1570, 10.1038/NMETH.1570 Chang M, 2011, ACS NANO, V5, P6156, DOI 10.1021/nn200693a Chao J, 2014, SMALL, V10, P4626, DOI 10.1002/smll.201401309 Chen ZW, 2013, CHEM-EUR J, V19, P1778, DOI 10.1002/chem.201202038 Chhabra R, 2007, J AM CHEM SOC, V129, P10304, DOI 10.1021/ja072410u Chung HJ, 2013, NAT NANOTECHNOL, V8, P369, DOI 10.1038/nnano.2013.70, 10.1038/NNANO.2013.70 Climent E, 2013, ANGEW CHEM INT EDIT, V52, P8938, DOI 10.1002/anie.201302954 Condon A, 2006, NAT REV GENET, V7, P565, DOI 10.1038/nrg1892 Delebecque CJ, 2011, SCIENCE, V333, P470, DOI 10.1126/science.1206938 Didenko VV, 2001, BIOTECHNIQUES, V31, P1106 Dietz H, 2009, SCIENCE, V325, P725, DOI 10.1126/science.1174251 Dong YC, 2014, ACCOUNTS CHEM RES, V47, P1853, DOI 10.1021/ar500073a Douglas SM, 2012, SCIENCE, V335, P831, DOI 10.1126/science.1214081 Emerich DF, 2005, EXPERT OPIN BIOL TH, V5, P1, DOI 10.1517/14712598.5.1.1 Endo M., 2011, CURRENT PROTOCOLS NU, DOI 10.1002/0471142700.nc1208s45, DOI 10.1002/0471142700.NC1208S45 Erben CM, 2006, ANGEW CHEM INT EDIT, V45, P7414, DOI 10.1002/anie.200603392 Fan CH, 2003, P NATL ACAD SCI USA, V100, P9134, DOI 10.1073/pnas.1633515100 GALL JG, 1969, P NATL ACAD SCI USA, V63, P378, DOI 10.1073/pnas.63.2.378 Gibson DG, 2011, METHOD ENZYMOL, V498, P349, DOI 10.1016/B978-0-12-385120-8.00015-2 Gibson DG, 2009, NAT METHODS, V6, P343, DOI 10.1038/nmeth.1318, 10.1038/NMETH.1318 Goodman RP, 2005, SCIENCE, V310, P1661, DOI 10.1126/science.1120367 Goodman RP, 2004, CHEM COMMUN, P1372, DOI 10.1039/b402293a Gothelf KV, 2005, ORG BIOMOL CHEM, V3, P4023, DOI 10.1039/b510551j Hall AR, 2010, NAT NANOTECHNOL, V5, P874, DOI 10.1038/nnano.2010.237, 10.1038/NNANO.2010.237 Han DR, 2011, SCIENCE, V332, P342, DOI 10.1126/science.1202998 He D., 2012, ADV FUNCT MATER, V22, P7 He Y, 2005, J AM CHEM SOC, V127, P12202, DOI 10.1021/ja0541938 Howell WM, 2002, GENOME RES, V12, P1401, DOI 10.1101/gr.297202 Howorka S, 2009, CHEM SOC REV, V38, P2360, DOI 10.1039/b813796j Hung AM, 2011, METHODS MOL BIOL, V749, P187, DOI 10.1007/978-1-61779-142-0_13 Hung AM, 2010, NAT NANOTECHNOL, V5, P121, DOI 10.1038/nnano.2009.450, 10.1038/NNANO.2009.450 Hwang S, 2005, ANAL CHEM, V77, P579, DOI 10.1021/ac048778g Immoos CE, 2004, J AM CHEM SOC, V126, P10814, DOI 10.1021/ja046634d Jiang Q, 2012, J AM CHEM SOC, V134, P13396, DOI 10.1021/ja304263n Jin Z, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2690 Kasianowicz JJ, 1996, P NATL ACAD SCI USA, V93, P13770, DOI 10.1073/pnas.93.24.13770 Ke YG, 2012, SCIENCE, V338, P1177, DOI 10.1126/science.1227268 Kim KR, 2013, CHEM COMMUN, V49, P2010, DOI 10.1039/c3cc38693g Kosuri S, 2010, NAT BIOTECHNOL, V28, P1295, DOI 10.1038/nbt.1716 Kuzyk A, 2012, NATURE, V483, P311, DOI 10.1038/nature10889 Langecker M, 2012, SCIENCE, V338, P932, DOI 10.1126/science.1225624 Lee H, 2012, NAT NANOTECHNOL, V7, P389, DOI 10.1038/nnano.2012.73, 10.1038/NNANO.2012.73 Lin CX, 2012, NAT CHEM, V4, P832, DOI 10.1038/NCHEM.1451 Liu XW, 2012, NANO LETT, V12, P4254, DOI 10.1021/nl301877k Lubin AA, 2006, ANAL CHEM, V78, P5671, DOI 10.1021/ac0601819 Lund K, 2005, J AM CHEM SOC, V127, P17606, DOI 10.1021/ja0568446 MA RI, 1986, NUCLEIC ACIDS RES, V14, P9745, DOI 10.1093/nar/14.24.9745 Majd S, 2010, CURR OPIN BIOTECH, V21, P439, DOI 10.1016/j.copbio.2010.05.002 Manrao EA, 2012, NAT BIOTECHNOL, V30, P349, DOI 10.1038/nbt.2171 Maune HT, 2010, NAT NANOTECHNOL, V5, P61, DOI 10.1038/nnano.2009.311, 10.1038/NNANO.2009.311 Mei QA, 2011, NANO LETT, V11, P1477, DOI 10.1021/nl1040836 Mirkin CA, 1996, NATURE, V382, P607, DOI 10.1038/382607a0 Modi S, 2009, NAT NANOTECHNOL, V4, P325, DOI 10.1038/nnano.2009.83, 10.1038/NNANO.2009.83 Nesterova IV, 2014, J AM CHEM SOC, V136, P8843, DOI 10.1021/ja501859w Nykypanchuk D, 2008, NATURE, V451, P549, DOI 10.1038/nature06560 Pal S, 2010, ANGEW CHEM INT EDIT, V49, P2700, DOI 10.1002/anie.201000330 Park N, 2009, NAT MATER, V8, P432, DOI 10.1038/nmat2419, 10.1038/NMAT2419 Park SH, 2006, ANGEW CHEM INT EDIT, V45, P735, DOI 10.1002/anie.200503797 PARRA I, 1993, NAT GENET, V5, P17, DOI 10.1038/ng0993-17 Pei H., 2012, ANGEW CHEM, V124, P9154 PETRILLO ML, 1988, BIOPOLYMERS, V27, P1337, DOI 10.1002/bip.360270902 Pinheiro AV, 2011, NAT NANOTECHNOL, V6, P763, DOI 10.1038/nnano.2011.187, 10.1038/NNANO.2011.187 Qi H, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3275 Quake SR, 2000, SCIENCE, V290, P1536, DOI 10.1126/science.290.5496.1536 Ricci F, 2007, CHEM COMMUN, P3768, DOI 10.1039/b708882e Rinker S, 2008, NAT NANOTECHNOL, V3, P418, DOI 10.1038/nnano.2008.164 Rothemund PWK, 2006, NATURE, V440, P297, DOI 10.1038/nature04586 Rothemund PWK, 2004, PLOS BIOL, V2, P2041, DOI 10.1371/journal.pbio.0020424 RUDKIN GT, 1977, NATURE, V265, P472, DOI 10.1038/265472a0 Ruiz-Hernandez E, 2011, ACS NANO, V5, P1259, DOI 10.1021/nn1029229 Saaem I, 2013, WIRES NANOMED NANOBI, V5, P150, DOI 10.1002/wnan.1204 Sacca B, 2010, ANGEW CHEM INT EDIT, V49, P9378, DOI 10.1002/anie.201005931 Sacca B, 2012, ANGEW CHEM INT EDIT, V51, P58, DOI 10.1002/anie.201105846 Schlossbauer A, 2010, ANGEW CHEM INT EDIT, V49, P4734, DOI 10.1002/anie.201000827 Schuller VJ, 2011, ACS NANO, V5, P9696, DOI 10.1021/nn203161y Schulman R, 2007, P NATL ACAD SCI USA, V104, P15236, DOI 10.1073/pnas.0701467104 SEEMAN NC, 1991, DNA CELL BIOL, V10, P475, DOI 10.1089/dna.1991.10.475 SEEMAN NC, 1982, J THEOR BIOL, V99, P237, DOI 10.1016/0022-5193(82)90002-9 Seeman NC, 2004, SCI AM, V290, P64 Seigneuric R, 2010, CURR MOL MED, V10, P640 Sharma J, 2009, SCIENCE, V323, P112, DOI 10.1126/science.1165831 Sharma J, 2008, ANGEW CHEM INT EDIT, V47, P5157, DOI 10.1002/anie.200801485 Sharma J, 2006, ANGEW CHEM INT EDIT, V45, P730, DOI 10.1002/anie.200503208 Shen XB, 2012, J AM CHEM SOC, V134, P146, DOI 10.1021/ja209861x Shi YH, 2014, CHEM COMMUN, V50, P15385, DOI 10.1039/c4cc06980c Shih WM, 2004, NATURE, V427, P618, DOI 10.1038/nature02307 Singh Y, 2010, CHEM SOC REV, V39, P2054, DOI 10.1039/b911431a Sobczak JPJ, 2012, SCIENCE, V338, P1458, DOI 10.1126/science.1229919 Surwade SP, 2013, J AM CHEM SOC, V135, P6778, DOI 10.1021/ja401785h Tikhomirov G, 2011, NAT NANOTECHNOL, V6, P485, DOI 10.1038/nnano.2011.100, 10.1038/NNANO.2011.100 Torring T, 2011, CHEM SOC REV, V40, P5636, DOI 10.1039/c1cs15057j Turberfield AJ, 2011, NAT CHEM, V3, P580, DOI 10.1038/nchem.1097 Voigt NV, 2010, NAT NANOTECHNOL, V5, P200, DOI 10.1038/nnano.2010.5, 10.1038/NNANO.2010.5 Wei B, 2012, NATURE, V485, P623, DOI 10.1038/nature11075 Weibel DB, 2007, NAT REV MICROBIOL, V5, P209, DOI 10.1038/nrmicro1616 Whitesides GM, 2001, SCI AM, V285, P38 Winfree E, 1998, NATURE, V394, P539, DOI 10.1038/28998 Xiao Y, 2006, P NATL ACAD SCI USA, V103, P16677, DOI 10.1073/pnas.0607693103 Yan H, 2003, SCIENCE, V301, P1882, DOI 10.1126/science.1089389 Yin P, 2008, SCIENCE, V321, P824, DOI 10.1126/science.1157312 Zhang DY, 2011, NAT CHEM, V3, P103, DOI 10.1038/nchem.957, 10.1038/NCHEM.957 Zhang GM, 2013, CHEM SOC REV, V42, P2488, DOI 10.1039/c2cs35302d Zhang JP, 2006, NANO LETT, V6, P248, DOI 10.1021/nl052210l Zhang YF, 2012, ANAL CHEM, V84, P1956, DOI 10.1021/ac202993p Zhao WA, 2012, P NATL ACAD SCI USA, V109, P19626, DOI 10.1073/pnas.1211234109 Zhao Z, 2011, ANGEW CHEM INT EDIT, V50, P2041, DOI 10.1002/anie.201006818 Zheng JP, 2009, NATURE, V461, P74, DOI 10.1038/nature08274 Zheng JW, 2006, NANO LETT, V6, P1502, DOI 10.1021/nl060994c Zhu CL, 2011, J AM CHEM SOC, V133, P1278, DOI 10.1021/ja110094g Qi, Hao Huang, Guoyou Han, Yulong Zhang, Xiaohui Li, Yuhui Pingguan-Murphy, Belinda Lu, Tian Jian Xu, Feng Wang, Lin Engineering, Faculty /I-7935-2015 Engineering, Faculty /0000-0002-4848-7052 National Natural Science Foundation of China 11372243; Major International Joint Research Program of China 11120101002; Key (Key grant) Project of Chinese Ministry of Education 313045; International Science & Technology Cooperation Program of China 2013DFG02930; Key Program for International S&T Cooperation Projects of Shaanxi 2014KW12-01; China Postdoctoral Science Foundation 2013 M532054; China Young 1000-Talent Program and Program for New Century Excellent Talents in University NCET-12-0437; Ministry of Higher Education (MOHE), Government of Malaysia UM.C/HIR/MOHE/ENG/44 This work was financially supported by the National Natural Science Foundation of China (11372243), the Major International Joint Research Program of China (11120101002), the Key (Key grant) Project of Chinese Ministry of Education (313045), International Science & Technology Cooperation Program of China (2013DFG02930) and Key Program for International S&T Cooperation Projects of Shaanxi (2014KW12-01) and China Postdoctoral Science Foundation (2013 M532054). F.X. was also partially supported by the China Young 1000-Talent Program and Program for New Century Excellent Talents in University (NCET-12-0437). B.P.-M. received funding from the Ministry of Higher Education (MOHE), Government of Malaysia, under the high impact research grant (UM.C/HIR/MOHE/ENG/44). 0 MARY ANN LIEBERT, INC NEW ROCHELLE TISSUE ENG PART B-RE
Uncontrolled Keywords: Gold nanoparticle arrays, mesoporous silica nanoparticles, resonance, energy-transfer, nucleic-acid junctions, single-stranded-dna, drug-delivery, nanoscale shapes, folding dna, i-motif, electronic, detection,
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 10 Jun 2016 00:08
Last Modified: 10 Feb 2020 08:37
URI: http://eprints.um.edu.my/id/eprint/15845

Actions (login required)

View Item View Item