Measurement of CO2 solubility in NaCl brine solutions at different temperatures and pressures using the potentiometric titration method

Mohammadian, E. and Hamidi, H. and Asadullah, M. and Azdarpour, A. and Motamedi, S. and Junin, R. (2015) Measurement of CO2 solubility in NaCl brine solutions at different temperatures and pressures using the potentiometric titration method. Journal of Chemical and Engineering Data, 60 (7). pp. 2042-2049. ISSN 0021-9568, DOI https://doi.org/10.1021/je501172d.

Full text not available from this repository.
Official URL: https://doi.org/10.1021/je501172d

Abstract

The solubility of CO2 in brine is one of the trapping mechanisms by which the CO2 is sequestrated in aquifers. in this research, an unconventional method, called the potentiometric titration, was used to Obtain the solubility of CO2 in distilled water and NaCl brine, The solubility data for the low salinity range are scarce in the literature. Thus, in this research, the CO, solubility was obtained in NaCl brines of low salinity (0-15 000 ppm) at temperatures between 60 degrees C and 100 degrees C and pressures up to 25 MPa. Moreover, the salting-out effect was estimated using the Setchenov's constant as a measure of reduction in solubility when salt is added to the solution. The solubility points obtained by the potentiometric titration method demonstrated very good consistency with those obtained by the previous methods.

Item Type: Article
Funders: UiTM Research Excellence Fund 600-RMI/DANA 5/3/RIF 547/2012 , HIR-MOHE, University of Malaya UM.C/HIR/MOHE/ENG/34
Additional Information: ISI Document Delivery No.: CM8PL Times Cited: 0 Cited Reference Count: 33 Cited References: Azdarpour A., 2014, INT J CHEM ENG, V28, P5953 Azdarpour A, 2014, FUEL PROCESS TECHNOL, V126, P429, DOI 10.1016/j.fuproc.2014.05.028 Azdarpour A., CHEM ENG J, DOI 10.1016/j.cej.2015.05.064, DOI 10.1016/J.CEJ.2015.05.064 Bachu S, 2003, ENERG CONVERS MANAGE, V44, P3151, DOI 10.1016/S0196-8904(03)00101-8 Bamberger A, 2000, J SUPERCRIT FLUID, V17, P97, DOI 10.1016/S0896-8446(99)00054-6 CARROLL JJ, 1991, J PHYS CHEM REF DATA, V20, P1201 Drummond S. E., 1981, THESIS PENNSYLVANIA Duan ZH, 2003, CHEM GEOL, V193, P257, DOI 10.1016/S0009-2541(02)00263-2 El-Maghraby RM, 2012, J SUPERCRIT FLUID, V62, P55, DOI 10.1016/j.supflu.2011.11.002 Fuller RC, 2006, J GEOPHYS RES-SOL EA, V111, DOI 10.1029/2005JB003618 Godec ML, 2013, ENERG FUEL, V27, P4183, DOI 10.1021/ef302040u Heavyseage R. G., 2002, ANN LOGG S SPWLA, V43 Hou SX, 2013, J SUPERCRIT FLUID, V73, P87, DOI 10.1016/j.supflu.2012.11.011 KING MB, 1992, J SUPERCRIT FLUID, V5, P296, DOI 10.1016/0896-8446(92)90021-B Koschel D, 2006, FLUID PHASE EQUILIBR, V247, P107, DOI 10.1016/j.fluid.2006.06.006 Li ZW, 2004, J CHEM ENG DATA, V49, P1026, DOI 10.1021/je049945c Lioyde L. L., 1997, PHASE EQUILIBR, V131, P67 Liu YH, 2011, J SUPERCRIT FLUID, V56, P125, DOI 10.1016/j.supflu.2010.12.003 Malinin S. D., 1972, GEOKHIMIYA, V6, P643 Mao SD, 2013, CHEM GEOL, V347, P43, DOI 10.1016/j.chemgeo.2013.03.010 NIGHSWANDER JA, 1989, J CHEM ENG DATA, V34, P355, DOI 10.1021/je00057a027 Peper S, 2012, J SUPERCRIT FLUID, V66, P2, DOI 10.1016/j.supflu.2011.09.021 Portier S, 2005, CHEM GEOL, V217, P187, DOI 10.1016/j.chemgeo.2004.12.007 Qui R., 2009, INT J GREENH GAS CON, V3, P195 RUMPF B, 1994, J SOLUTION CHEM, V23, P431, DOI 10.1007/BF00973113 Tsouris C, 2007, ENERG FUEL, V21, P3300, DOI 10.1021/el070197h Wang L, 2014, FLUID PHASE EQUILIBR, V377, P45, DOI 10.1016/j.fluid.2014.06.016 Wiebe R, 1939, J AM CHEM SOC, V61, P315, DOI 10.1021/ja01871a025 Yan W, 2011, INT J GREENH GAS CON, V5, P1460, DOI 10.1016/j.ijggc.2011.08.004 Zhang DF, 2013, ENERG FUEL, V27, P387, DOI 10.1021/ef301191p Zhao XL, 2012, ENERG FUEL, V26, P5350, DOI 10.1021/ef300783c Zheng DQ, 1997, FLUID PHASE EQUILIBR, V129, P197, DOI 10.1016/S0378-3812(96)03177-9 Zumdahl S. S., 2002, CHEM PRINCIPLES Mohammadian, Erfan Hamidi, Hossein Asadullah, Mohammad Azdarpour, Amin Motamedi, Shervin Junin, Radzuan UiTM Research Excellence Fund 600-RMI/DANA 5/3/RIF 547/2012; HIR-MOHE, University of Malaya UM.C/HIR/MOHE/ENG/34 This research was financially supported by the UiTM Research Excellence Fund (Grant No. 600-RMI/DANA 5/3/RIF 547/2012). The authors also wish to thank the Faculty of Chemical Engineering at Universiti Teknologi MARA in Shah Alam, Malaysia for the provision of laboratory facilities for this work. Also, sincere thanks are expressed for the funding support received from the HIR-MOHE, University of Malaya, under the Grant No. UM.C/HIR/MOHE/ENG/34. 0 AMER CHEMICAL SOC WASHINGTON J CHEM ENG DATA
Uncontrolled Keywords: Dioxide plus water, carbon-dioxide, aqueous-solutions, saline aquifers, improved model, pure water, sequestration, equilibrium, bar,
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 18 Apr 2016 00:44
Last Modified: 31 May 2019 04:25
URI: http://eprints.um.edu.my/id/eprint/15790

Actions (login required)

View Item View Item