Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids

Mehrali, M. and Sadeghinezhad, E. and Rashidi, M.M. and Akhiani, A.R. and Latibari, S.T. and Mehrali, M. and Metselaar, H.S.C. (2015) Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids. Journal of Nanoparticle Research, 17 (6). p. 17. ISSN 1388-0764

PDF (Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids)
Experimental_and_numerical_investigation_of_the_effective_electrical_conductivity_of_nitrogen.pdf - Published Version

Download (2MB)
Official URL: http://link.springer.com/article/10.1007/s11051-01...


Electrical conductivity is an important property for technological applications of nanofluids that have not been widely investigated, and few studies have been concerned about the electrical conductivity. In this study, nitrogen-doped graphene (NDG) nanofluids were prepared using the two-step method in an aqueous solution of 0.025 wt Triton X-100 as a surfactant at several concentrations (0.01, 0.02, 0.04, 0.06 wt). The electrical conductivity of the aqueous NDG nanofluids showed a linear dependence on the concentration and increased up to 1814.96 for a loading of 0.06 wt NDG nanosheet. From the experimental data, empirical models were developed to express the electrical conductivity as functions of temperature and concentration. It was observed that increasing the temperature has much greater effect on electrical conductivity enhancement than increasing the NDG nanosheet loading. Additionally, by considering the electrophoresis of the NDG nanosheets, a straightforward electrical conductivity model is established to modulate and understand the experimental results.

Item Type: Article
Additional Information: ISI Document Delivery No.: CK4BK Times Cited: 0 Cited Reference Count: 50 Cited References: Akhavan O, 2010, CARBON, V48, P509, DOI 10.1016/j.carbon.2009.09.069 Akhavan O, 2012, CARBON, V50, P1853, DOI 10.1016/j.carbon.2011.12.035 Aladag B, 2012, APPL ENERG, V97, P876, DOI 10.1016/j.apenergy.2011.12.101 Aravind SSJ, 2011, J PHYS CHEM C, V115, P16737, DOI 10.1021/jp201672p Azizi-Toupkanloo H, 2013, ADV POWDER TECHNOL, V25, P801, DOI DOI 10.1016/J.APT.2013.11.015 Bailar JC, 1934, J AM CHEM SOC, V56, P774, DOI 10.1021/ja01319a004 Banerjee N, 2010, DALTON T, V39, P9789, DOI 10.1039/c0dt00386g Blanton TN, 2012, POWDER DIFFR, V27, P104, DOI 10.1017/S0885715612000292 Chakraborty S, 2008, ACS NANO, V2, P2029, DOI 10.1021/nn800343h Crowe CT, 2005, ENG FLUID MECH, V9 Cruz RCD, 2005, J COLLOID INTERF SCI, V286, P579, DOI 10.1016/j.jcis.2005.02.025 Dong M, 2013, J NANOMATER, DOI 10.1155/2013/842963 Fang F, 2005, J MATER SCI, V40, P2979, DOI 10.1007/s10853-005-2386-9 Ganguly S, 2009, POWDER TECHNOL, V196, P326, DOI 10.1016/j.powtec.2009.08.010 Goharshadi EK, 2015, MICROFLUID NANOFLUID, V18, P667, DOI 10.1007/s10404-014-1465-0 Goharshadi EK, 2013, POWDER TECHNOL, V237, P97, DOI 10.1016/j.powtec.2012.12.059 Guo HL, 2013, J MATER CHEM A, V1, P2248, DOI 10.1039/c2ta00887d Esfe MH, 2014, INT COMMUN HEAT MASS, V58, P176, DOI 10.1016/j.icheatmasstransfer.2014.08.037 Hernandez Y, 2008, NAT NANOTECHNOL, V3, P563, DOI 10.1038/nnano.2008.215 Kalteh M, 2011, INT J HEAT FLUID FL, V32, P107, DOI 10.1016/j.ijheatfluidflow.2010.08.001 Kole M, 2013, J APPL PHYS, V113, DOI 10.1063/1.4793581 Lee D, 2007, LANGMUIR, V23, P6011, DOI 10.1021/la063094k Lin Y.C., 2010, APPL PHYS LETT, V96 Lisunova MO, 2006, J COLLOID INTERF SCI, V299, P740, DOI 10.1016/j.jcis.2006.03.012 Liu JF, 2014, J ELECTROCHEM SOC, V161, pF544, DOI 10.1149/2.095404jes Long DH, 2010, LANGMUIR, V26, P16096, DOI 10.1021/la102425a Maxwell J.C., 1881, TREATISE ELECT MAGNE, V1 Maxwell JC, 1904, TREATISE ELECT MAGNE, V2 Mehrali M, 2013, ENERG CONVERS MANAGE, V67, P275, DOI 10.1016/j.enconman.2012.11.023 Mehrali M, 2014, APPL ENERG, V135, P339, DOI 10.1016/j.apenergy.2014.08.100 Mehrali M, 2014, J MATER SCI, V49, P7156, DOI 10.1007/s10853-014-8424-8 Mehrali M, 2014, NANOSCALE RES LETT, V9, DOI 10.1186/1556-276X-9-15 Mehrali M, 2014, ACS APPL MATER INTER, V6, P3947, DOI 10.1021/am500845x Mehrali M, 2013, ENERGY, V58, P628, DOI 10.1016/j.energy.2013.05.050 Minea AA, 2012, MICROFLUID NANOFLUID, V13, P977, DOI 10.1007/s10404-012-1017-4 O'Dwyer JJ, 1973, THEORY ELECT CONDUCT Ohshima H, 1998, ELECT PHENOMENA INTE, V76 Reddy ALM, 2010, ACS NANO, V4, P6337, DOI 10.1021/nn101926g Sadeghinezhad E, 2014, IND ENG CHEM RES, V53, P12455, DOI 10.1021/ie501947u Safaei MR, 2014, NUMER HEAT TR A-APPL, V66, P1321, DOI 10.1080/10407782.2014.916101 Sheng ZH, 2011, ACS NANO, V5, P4350, DOI 10.1021/nn103584t Togun H, 2014, APPL MATH COMPUT, V239, P153, DOI 10.1016/j.amc.2014.04.051 Usachov D, 2011, NANO LETT, V11, P5401, DOI 10.1021/nl2031037 Vinayan BP, 2013, J MATER CHEM A, V1, P3865, DOI 10.1039/c3ta01515g Wei DC, 2009, NANO LETT, V9, P1752, DOI 10.1021/nl803279t White SB, 2011, NANOSCALE RES LETT, V6, P1 Wong K-F, 2006, ASME 2006 INT MECH E, P251 Wu P, 2012, J MATER CHEM, V22, P6402, DOI 10.1039/c2jm16929k Xuan YM, 2006, J APPL PHYS, V100, DOI 10.1063/1.2245203 Yousefi T, 2012, SOL ENERGY, V86, P771, DOI 10.1016/j.solener.2011.12.003 Mehrali, Mohammad Sadeghinezhad, Emad Rashidi, Mohammad Mehdi Akhiani, Amir Reza Latibari, Sara Tahan Mehrali, Mehdi Metselaar, Hendrik Simon Cornelis Metselaar, Hendrik/B-5324-2010; Mehrali, Mehdi/G-6395-2011; Engineering, Faculty /I-7935-2015 Metselaar, Hendrik/0000-0003-1047-654X; Mehrali, Mehdi/0000-0002-5084-1823; Engineering, Faculty /0000-0002-4848-7052 Ministry of High Education (MOHE) of Malaysia UM.C/625/1/HIR/MOHE/ENG/21; UMRG RP021-2012A; Malaysian FRGS National Grant FP007/2013A This research work has been financially supported by the Ministry of High Education (MOHE) of Malaysia under Grant No. UM.C/625/1/HIR/MOHE/ENG/21, UMRG Grant RP021-2012A, and Malaysian FRGS National Grant FP007/2013A. 0 SPRINGER DORDRECHT J NANOPART RES
Uncontrolled Keywords: Nitrogen-doped graphene, Nanofluid, Characterization, Stability, Electrical conductivity, Empirical models, THERMAL-ENERGY STORAGE, HEAT-TRANSFER, THERMOPHYSICAL PROPERTIES, OXIDE, COMPOSITES, FACILE SYNTHESIS, GRAPHITE OXIDE, SUSPENSIONS, STABILITY, VISCOSITY, REDUCTION,
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TJ Mechanical engineering and machinery
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 18 Apr 2016 00:48
Last Modified: 18 Apr 2016 00:48
URI: http://eprints.um.edu.my/id/eprint/15786

Actions (login required)

View Item View Item


Downloads per month over past year