Molecular dynamic simulation on the thermal conductivity of nanofluids in aggregated and non-aggregated states

Lee, S.L. and Saidur, R. and Sabri, M.F.M. and Min, T.K. (2015) Molecular dynamic simulation on the thermal conductivity of nanofluids in aggregated and non-aggregated states. Numerical Heat Transfer Part a-Applications, 68 (4). pp. 432-453. ISSN 1040-7782

PDF (Molecular Dynamic Simulation on the Thermal Conductivity of Nanofluids in Aggregated and Non-Aggregated States)
Molecular_Dynamic_Simulation_on_the_Thermal_Conductivity_of_Nanofluids_in_Aggregated.pdf - Published Version

Download (1MB)
Official URL:


Nanofluids are engineered by suspending nanoparticles in convectional heat transfer fluids to enhance thermal conductivity. This study is aimed at identifying the role of nanoparticle aggregation in enhancing the thermal conductivity of nanofluids. Molecular dynamic simulation with the Green Kubo method was employed to compute thermal conductivity of nanofluids in aggregated and non-aggregated states. Results show that the thermal conductivity enhancement of nanofluids in an aggregated state is higher than in a non-aggregated state, by up to 35. The greater enhancement in aggregated nanofluids is attributed to both higher collision among nanoparticles and increases in the potential energy of nanoparticles.

Item Type: Article
Additional Information: ISI Document Delivery No.: CG7RX Times Cited: 0 Cited Reference Count: 71 Cited References: Babaei H., 2012, J APPL PHYS, V112 Bastea S, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.019401 Chen L, 2014, NUMER HEAT TR A-APPL, V65, P216, DOI 10.1080/10407782.2013.784677 Choi SUS, 2001, APPL PHYS LETT, V79, P2252, DOI 10.1063/1.1408272 Chopkar M, 2007, MAT SCI ENG B-SOLID, V139, P141, DOI 10.1016/j.mseb.2007.01.048 Chopkar M, 2006, SCRIPTA MATER, V55, P549, DOI 10.1016/j.scriptamat.2006.05.030 Darbandi M, 2013, NUMER HEAT TR B-FUND, V63, P248, DOI 10.1080/10407790.2013.751254 Das SK, 2003, J HEAT TRANS-T ASME, V125, P567, DOI 10.1115/1.1561080 Eapen J, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.095901 Eapen J, 2007, PHYS REV E, V76, DOI 10.1103/PhysRevE.76.062501 Eapen J., 2007, PHYS REV LETT, V98 Eapen J., 2010, J HEAT TRANSFER, V132, P1 Eapen Mean-Field Bounds J., 2008, ASME 2008 HEAT TRANS, V1, P343 Eastman JA, 2004, ANNU REV MATER RES, V34, P219, DOI 10.1146/annurev.matsci.34.052803.090621 Eastman JA, 2001, APPL PHYS LETT, V78, P718, DOI 10.1063/1.1341218 Evans W, 2006, APPL PHYS LETT, V88, DOI 10.1063/1.2179118 Evans W, 2008, INT J HEAT MASS TRAN, V51, P1431, DOI 10.1016/j.ijheatmasstransfer.2007.10.017 Ghosh MM, 2011, J NANOSCI NANOTECHNO, V11, P2196, DOI 10.1166/jnn.2011.3557 Haile JM, 1992, MOL DYNAMICS SIMULAT HASHIN Z, 1962, J APPL PHYS, V33, P3125, DOI 10.1063/1.1728579 Hong J, 2012, THERMOCHIM ACTA, V542, P28, DOI 10.1016/j.tca.2011.12.019 Humphrey W, 1996, J MOL GRAPH MODEL, V14, P33, DOI 10.1016/0263-7855(96)00018-5 Jang SP, 2004, APPL PHYS LETT, V84, P4316, DOI 10.1063/1.1756684 Jia T, 2012, APPL PHYS A-MATER, V108, P537, DOI 10.1007/s00339-012-7019-y Jones R. E., 2012, J CHEM PHYS, V136 Kaburaki H., 2005, HDB MAT MODELING Kang H., 2012, J NANOTECHNOL ENG ME, V3 Kang HB, 2011, APPL PHYS A-MATER, V103, P1001, DOI 10.1007/s00339-011-6379-z Keblinski P, 2002, INT J HEAT MASS TRAN, V45, P855, DOI 10.1016/S0017-9310(01)00175-2 Keblinski P, 2008, J NANOPART RES, V10, P1089, DOI 10.1007/s11051-007-9352-1 Keblinski P, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.209401 KONG CL, 1973, J CHEM PHYS, V59, P2464, DOI 10.1063/1.1680358 KUBO R, 1957, J PHYS SOC JPN, V12, P1203, DOI 10.1143/JPSJ.12.1203 Kumar DH, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.144301 Lennard-Jones JE, 1937, PROC R SOC LON SER-A, V163, P0053, DOI 10.1098/rspa.1937.0210 Li L, 2008, PHYS LETT A, V372, P4541, DOI 10.1016/j.physleta.2008.04.046 Lin Y. S., 2011, APPL PHYS LETT, V98 Lin YS, 2012, INT J THERM SCI, V62, P56, DOI 10.1016/j.ijthermalsci.2012.02.003 McGaughey AJH, 2004, INT J HEAT MASS TRAN, V47, P1783, DOI 10.1016/j.ijheatmasstransfer.2003.11.002 MullerPlathe F, 1997, J CHEM PHYS, V106, P6082, DOI 10.1063/1.473271 Murshed SMS, 2005, INT J THERM SCI, V44, P367, DOI 10.1016/j.ijthermalsci.2004.12.005 Nie C, 2008, INT J HEAT MASS TRAN, V51, P1342, DOI 10.1016/j.ijheatmasstransfer.2007.11.034 P. Keblinski Fundamentals of Energy Transport in Nanofluids Rensselaer Polytechnic Institute (RPI), 2007, DEFG0204ER46104 RPI Philip J., 2008, NANOTECHNOLOGY, V19 Plimpton S., 2003, LAMMPS LARGE SCALE A Prasher R., 2006, APPL PHYS LETT, V89, P3 Prasher R., 2005, PHYS REV LETT, V94 Prasher R, 2006, NANO LETT, V6, P1529, DOI 10.1021/nl060992s Prasher R, 2006, J HEAT TRANS-T ASME, V128, P588, DOI 10.1115/1.2188509 Putnam SA, 2006, J APPL PHYS, V99, DOI 10.1063/1.2189933 Sankar N, 2008, INT COMMUN HEAT MASS, V35, P867, DOI 10.1016/j.icheatmasstransfer.2008.03.006 Sarkar S., 2007, J APPL PHYS, V102 Sarkar S., 2007, 2007 MRS SPRING P LI, V1022 Shalkevich N, 2010, J PHYS CHEM C, V114, P9568, DOI 10.1021/jp910722j Shims P.D., 2009, APPL PHYS LETT, V94 Teng KL, 2008, J NANOSCI NANOTECHNO, V8, P3710, DOI 10.1166/jnn.2008.007 Venerus D. C., 2006, J APPL PHYS, V100 Vladkov M, 2006, NANO LETT, V6, P1224, DOI 10.1021/nl060670o Wang BX, 2003, INT J HEAT MASS TRAN, V46, P2665, DOI 10.1016/S0017-9310(03)00016-4 Wang JJ, 2012, NANO TODAY, V7, P124, DOI 10.1016/j.nantod.2012.02.007 Wu XA, 2005, HEAT TRANSF DIV ASME, V376-2, P759 Xie H, 2002, INT J THERMOPHYS, V23, P571, DOI 10.1023/A:1015121805842 Xie HQ, 2005, INT J HEAT MASS TRAN, V48, P2926, DOI 10.1016/j.ijheatmasstransfer.2004.10.040 Xuan YM, 2000, INT J HEAT FLUID FL, V21, P58, DOI 10.1016/S0142-727X(99)00067-3 Xuan YM, 2003, AICHE J, V49, P1038, DOI 10.1002/aic.690490420 Xue L, 2003, J CHEM PHYS, V118, P337, DOI 10.1063/1.1525806 Xue L, 2004, INT J HEAT MASS TRAN, V47, P4277, DOI 10.1016/j.ijheatmasstransfer.2004.05.016, 10.1016/ijheatmasstransfer.2004.05.016 Xue Q, 2005, MATER CHEM PHYS, V90, P298, DOI 10.1016/j.matchemphys.2004.05.029 Yoo DH, 2007, THERMOCHIM ACTA, V455, P66, DOI 10.1016/j.tca.2006.12.006 Zhou WJ, 2012, NUMER HEAT TR B-FUND, V61, P369, DOI 10.1080/10407790.2012.666144 Zhu HT, 2006, APPL PHYS LETT, V89, DOI 10.1063/1.2221905 Lee, S. L. Saidur, R. Sabri, M. F. M. Min, T. K. MOHD SABRI, MOHD FAIZUL/B-9084-2010; Engineering, Faculty /I-7935-2015 MOHD SABRI, MOHD FAIZUL/0000-0001-8096-2709; Engineering, Faculty /0000-0002-4848-7052 Ministry of Higher Education Malaysia (MoHE); UM-MoHE High Impact Research Grant Scheme (HIRG) UM.C/HIR/MOHE/ENG/40 The authors would like to acknowledge the Ministry of Higher Education Malaysia (MoHE) for its financial support. This work was also supported by the UM-MoHE High Impact Research Grant Scheme (HIRG) (Project No.: UM.C/HIR/MOHE/ENG/40). 0 TAYLOR & FRANCIS INC PHILADELPHIA NUMER HEAT TR A-APPL
Uncontrolled Keywords: Liquid-solid interface, brownian-motion, nanoparticle suspensions, enhancement, model, mechanisms, water, nonequilibrium, resistance, particles,
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TJ Mechanical engineering and machinery
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 09 Mar 2016 03:29
Last Modified: 09 Mar 2016 03:29

Actions (login required)

View Item View Item


Downloads per month over past year