Development of a passive liquid valve (PLV) utilizing a pressure equilibrium phenomenon on the centrifugal microfluidic platform

Al-Faqheri, W. and Ibrahim, Fatimah and Thio, T.H.G. and Bahari, N. and Arof, Hamzah and Rothan, Hussin A. and Yusof, Rohana and Madou, M. (2015) Development of a passive liquid valve (PLV) utilizing a pressure equilibrium phenomenon on the centrifugal microfluidic platform. Sensors, 15 (3). pp. 4658-4676. ISSN 1424-8220

PDF (Development of a Passive Liquid Valve (PLV) Utilizing a Pressure Equilibrium Phenomenon on the Centrifugal Microfluidic Platform)
2015-393-Development_of_a_Passive_Liquid_Valve_(PLV)_Utilizing_a_Pressure_Equilibrium_Phenomenon_.pdf - Published Version

Download (2MB)
Official URL:


In this paper, we propose an easy-to-implement passive liquid valve (PLV) for the microfluidic compact-disc (CD). This valve can be implemented by introducing venting chambers to control the air flow of the source and destination chambers. The PLV mechanism is based on equalizing the main forces acting on the microfluidic CD (i.e., the centrifugal and capillary forces) to control the burst frequency of the source chamber liquid. For a better understanding of the physics behind the proposed PLV, an analytical model is described. Moreover, three parameters that control the effectiveness of the proposed valve, i.e., the liquid height, liquid density, and venting chamber position with respect to the CD center, are tested experimentally. To demonstrate the ability of the proposed PLV valve, microfluidic liquid switching and liquid metering are performed. In addition, a Bradford assay is performed to measure the protein concentration and evaluated in comparison to the benchtop procedure. The result shows that the proposed valve can be implemented in any microfluidic process that requires simplicity and accuracy. Moreover, the developed valve increases the flexibility of the centrifugal CD platform for passive control of the liquid flow without the need for an external force or trigger.

Item Type: Article
Additional Information: ISI Document Delivery No.: CH6QK Times Cited: 0 Cited Reference Count: 30 Cited References: Abi-Samra K, 2011, LAB CHIP, V11, P723, DOI 10.1039/c0lc00160k Aeinehvand M. M., 2014, BIOSENS BIOELECTRON, DOI 10.1016/j.bios.2014.08.076, DOI 10.1016/J.BI0S.2014.08.076 Al- Faqheri W., 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058523, DOI 10.1371/J0URNAL.P0NE.0058523 Amasia M, 2012, SENSOR ACTUAT B-CHEM, V161, P1191, DOI 10.1016/j.snb.2011.11.080 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999 Burger R, 2012, LAB CHIP, V12, P1289, DOI 10.1039/c2lc21170j Ducree J, 2007, J MICROMECH MICROENG, V17, pS103, DOI 10.1088/0960-1317/17/7/S07 Focke M, 2010, LAB CHIP, V10, P2519, DOI 10.1039/c004954a Garcia-Cordero JL, 2010, LAB CHIP, V10, P2680, DOI 10.1039/c004980h Grumann M, 2005, LAB CHIP, V5, P560, DOI 10.1039/b418253g Haeberle S., 2012, MICROSYSTEMS NANOTEC, P853 Ibrahim F., 2010, P IEEE C BIOM ENG SC, P466, DOI DOI 10.1109/IECBES.2010.5742282 Imaad SM, 2011, LAB CHIP, V11, P1448, DOI 10.1039/c0lc00451k Kazemzadeh A, 2014, SENSOR ACTUAT B-CHEM, V204, P149, DOI 10.1016/j.snb.2014.07.097 Kim D, 2007, SENSOR ACTUAT A-PHYS, V136, P426, DOI 10.1016/j.sna.2006.11.004 Lai S, 2004, ANAL CHEM, V76, P1832, DOI 10.1021/ac0348322 Li B, 2005, SENSOR ACTUAT A-PHYS, V117, P325, DOI 10.1016/j.sna.2004.06.029 Madou M, 2006, ANNU REV BIOMED ENG, V8, P601, DOI 10.1146/annurev.bioeng.8.061505.095758 Mark D, 2009, LAB CHIP, V9, P3599, DOI 10.1039/b914415c Morijiri T., 2010, P 14 INT C MIN SYST, P722 Nguyen NT, 2004, SENSOR ACTUAT B-CHEM, V97, P137, DOI 10.1016/S0925-4005(03)00521-5 Oh K. W., 2005, MICROTOTAL ANAL SYST, V1, P554 Oh KW, 2006, J MICROMECH MICROENG, V16, pR13, DOI 10.1088/0960-1317/16/5/R01 Siegrist J, 2010, MICROFLUID NANOFLUID, V9, P55, DOI 10.1007/s10404-009-0523-5 Soroori S, 2014, MICROFLUID NANOFLUID, V16, P1117, DOI 10.1007/s10404-013-1277-7 Sugiura S, 2009, LAB CHIP, V9, P196, DOI 10.1039/b810717c Thio T, 2011, IFMBE PROC, V35, P578 Thio THG, 2013, MED BIOL ENG COMPUT, V51, P525, DOI 10.1007/s11517-012-1020-7 Yang BZ, 2007, SENSOR ACTUAT A-PHYS, V134, P194, DOI 10.1016/j.sna.2006.07.017 Yusoff N. A., 2009, P IEEE S IND EL APPL, P946, DOI DOI 10.1109/ISIEA.2009.5356330 Al-Faqheri, Wisam Ibrahim, Fatimah Thio, Tzer Hwai Gilbert Bahari, Norulain Arof, Hamzah Rothan, Hussin A. Yusof, Rohana Madou, Marc Engineering, Faculty /I-7935-2015 Engineering, Faculty /0000-0002-4848-7052 University of Malaya High Impact Research Grant from Ministry of Higher Education Malaysia (MOHE) UM-MOHE UM.C/625/1/HIR/MOHE/05; Fundamental Research Grant Scheme FRGS: FP042-2013B; University of Malaya Research Grant UMRG: RG009A-13AET; Yayasan Sultan Iskandar Johor Foundation; National Institute of Health 1 R01 AI089541-01 This research is supported by University of Malaya High Impact Research Grant UM-MOHE UM.C/625/1/HIR/MOHE/05 from Ministry of Higher Education Malaysia (MOHE), Fundamental Research Grant Scheme (FRGS: FP042-2013B) and University of Malaya Research Grant (UMRG: RG009A-13AET). Fatimah Ibrahim would like to acknowledge Yayasan Sultan Iskandar Johor Foundation for funding the Special Equipment Grant. Marc Madou acknowledges support of the National Institute of Health (grant 1 R01 AI089541-01). 0 MDPI AG BASEL SENSORS-BASEL
Uncontrolled Keywords: Centrifugal platform, microfluidic CD, passive liquid valve, pressure, equilibrium, S-PLV, D-PLV, DESIGN, CD,
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 04 Apr 2016 01:12
Last Modified: 11 Oct 2018 04:14

Actions (login required)

View Item View Item


Downloads per month over past year