Ionic liquid entrapment by an electrospun polymer nanofiber matrix as a high conductivity polymer electrolyte

Datta, R.S. and Said, S.M. and Shahrir, S.R. and Abdullah, N. and Sabri, M.F.M. and Balamurugan, S. and Miyazaki, Y. and Hayashi, K. and Hashim, N.A. and Habiba, U. and Afifi, A.M. (2015) Ionic liquid entrapment by an electrospun polymer nanofiber matrix as a high conductivity polymer electrolyte. RSC Advances, 5 (60). pp. 48217-48223. ISSN 2046-2069

[img]
Preview
PDF (Ionic liquid entrapment by an electrospun polymer nanofiber matrix as a high conductivity polymer electrolyte)
Ionic_liquid_entrapment_by_an_electrospun_polymer_nanofiber_matrix.pdf - Published Version

Download (1MB)
Official URL: http://pubs.rsc.org/en/content/articlepdf/2015/ra/...

Abstract

Through external doping, novel conductive polymer nanofibers were successfully fabricated using ionic liquids. In this study, a polymer blend of polyvinyl alcohol (PVA) and chitosan (CS) in a 4 : 1 weight ratio was fabricated in the form of nanofibers through electrospinning and used as a scaffold membrane to capture room-temperature ionic liquids (RTILs), such as 1-ethyl-3-methylimidazolium chloride (EMIMCl) and 1-butyl-3-methylimidazolium bromide (BMIMBr). Morphological analysis using scanning electron microscopy (SEM) showed that the scaffold structure of the electrospun membrane facilitated sufficient trapping of RTILs. This membrane demonstrated significantly increased conductivity from 6 x 10(-6) S cm(-1) to 0.10 S cm(-1), interestingly surpassing the value of pure ionic liquids, where the polymer chain breathing model has been suggested as a hypothesis to explain this phenomena. The dominance of ions as charge carriers was explained using an ionic transference number measurement. The interaction between the polymer nanofiber matrix and an ionic liquid has been explained using Fourier-transform infrared spectroscopy (FTIR), where the ionic liquid was found to be physically dispersed in the polymer nanofiber matrix. These materials have also shown some thermoelectric (TE) activity, by demonstrating Seebeck coefficients up to 17.92 mu V K-1. The existence of freely movable ions in this type of membrane shows their applications as energy storage/conversion devices such as organic thermoelectrics (TEs), sensors, and dye-sensitised solar cells.

Item Type: Article
Additional Information: ISI Document Delivery No.: CJ8GN Times Cited: 0 Cited Reference Count: 47 Cited References: Abdelrazek EM, 2010, PHYSICA B, V405, P2021, DOI 10.1016/j.physb.2010.01.095 Abraham TJ, 2011, CHEM COMMUN, V47, P6260, DOI 10.1039/c1cc11501d Bai Y, 2015, ACS APPL MATER INTER, V7, P5598, DOI 10.1021/acsami.5b00861 Bonilla J, 2014, FOOD HYDROCOLLOID, V35, P463, DOI 10.1016/j.foodhyd.2013.07.002 Buraidah MH, 2011, J NON-CRYST SOLIDS, V357, P3261, DOI 10.1016/j.jnoncrysol.2011.05.021 Chandra S, 2000, IONICS, V6, P112, DOI 10.1007/BF02375554 Chen CH, 2012, J APPL POLYM SCI, V125, P3134, DOI 10.1002/app.36474 Chowdhury G. S. M., 2010, INT J BASIC APPL SCI, V10, P70 Chronakis IS, 2006, POLYMER, V47, P1597, DOI 10.1016/j.polymer.2006.01.032 Costa ED, 2009, J MATER SCI-MATER M, V20, P553, DOI 10.1007/s10856-008-3627-7 Datta RS, 2014, J ELECTRON MATER, V43, P1585, DOI 10.1007/s11664-013-2799-1 Dharaskar S. A., 2013, SCI WORLD J, V2013, P1 Domanska U, 2005, PURE APPL CHEM, V77, P543, DOI 10.1351/pac200577030543 English NJ, 2011, MOL PHYS, V109, P625, DOI 10.1080/00268976.2010.544263 Hema M, 2008, PHYSICA B, V403, P2740, DOI 10.1016/j.physb.2008.02.001 Homayoni H, 2009, CARBOHYD POLYM, V77, P656, DOI 10.1016/j.carbpol.2009.02.008 Huang ZM, 2003, COMPOS SCI TECHNOL, V63, P2223, DOI 10.1016/S0266-3538(03)00178-7 Hyder MN, 2009, J MEMBRANE SCI, V340, P171, DOI 10.1016/j.memsci.2009.05.021 Islam A, 2014, RADIAT PHYS CHEM, V96, P115, DOI 10.1016/j.radphyschem.2013.09.009 Jia HF, 2002, BIOTECHNOL PROGR, V18, P1027, DOI 10.1021/bp020042m Johnson CJ, 2013, J CHEM PHYS, V139, DOI 10.1063/1.4838475 Kattamuri N, 2005, J MATER SCI, V40, P4531, DOI 10.1007/s10853-005-2803-0 Kim GH, 2013, NAT MATER, V12, P719, DOI 10.1038/nmat3635, 10.1038/NMAT3635 Kim K, 2003, BIOMATERIALS, V24, P4977, DOI 10.1016/S0142-9612(03)00407-1 Kumar D, 2010, SOLID STATE IONICS, V181, P416, DOI 10.1016/j.ssi.2010.01.025 Li H, 2015, J POWER SOURCES, V273, P784, DOI 10.1016/j.jpowsour.2014.09.153 Ling S., 2013, SCI REP, V3, P1 Mansur HS, 2004, POLYMER, V45, P7193, DOI 10.1016/j.polymer.2004.08.036 Martins A, 2008, INT MATER REV, V53, P257, DOI 10.1179/174328008X353547 Meli L, 2010, GREEN CHEM, V12, P1883, DOI 10.1039/c0gc00283f Osman Z., 2012, RESULTS PHYS, V2, P1, DOI DOI 10.1016/J.RINP.2011.12.001 Pakravan M, 2011, POLYMER, V52, P4813, DOI 10.1016/j.polymer.2011.08.034 Rajkumar T, 2008, J CHEM SCI, V120, P587, DOI 10.1007/s12039-008-0089-x Ramakrishna S, 2006, MATER TODAY, V9, P40, DOI 10.1016/S1369-7021(06)71389-X Sautter B. P., 2005, CONTINUOUS POLYM NAN Tshibangu PN, 2011, INT J ELECTROCHEM SC, V6, P2201 Tsuda T., 2007, INTERFACE, P42 Uhl S, 2014, J ELECTRON MATER, V43, P3758, DOI 10.1007/s11664-014-3126-1 Hong SU, 2009, CHEM COMMUN, P7227, DOI 10.1039/b913746g Viciosa MT, 2013, RSC ADV, V3, P5663, DOI 10.1039/c3ra23196h Wang XY, 2004, NANO LETT, V4, P331, DOI 10.1021/nl034885z Williams D. H., 2007, SPECTROSCOPIC METHOD, V6th Xie JW, 2008, MACROMOL RAPID COMM, V29, P1775, DOI 10.1002/marc.200800381 Yoonnam Jeon, 2008, Journal of Physical Chemistry B, V112, DOI 10.1021/jp0746650 Zhang YZ, 2006, POLYMER, V47, P2911, DOI 10.1016/j.polymer.2006.02.046 Zhou WM, 2012, ACS APPL MATER INTER, V4, P2154, DOI 10.1021/am300151r Zussman E, 2003, APPL PHYS LETT, V82, P973, DOI 10.1063/1.1544060 Datta, R. S. Said, S. M. Shahrir, S. R. Abdullah, Norbani Sabri, M. F. M. Balamurugan, S. Miyazaki, Y. Hayashi, K. Hashim, N. A. Habiba, Umma Afifi, Amalina M. Engineering, Faculty /I-7935-2015; MOHD SABRI, MOHD FAIZUL/B-9084-2010 Engineering, Faculty /0000-0002-4848-7052; MOHD SABRI, MOHD FAIZUL/0000-0001-8096-2709 University of Malaya-Ministry of Higher Education Grant UM.C/625/1/HIR/MOHE/ENG/29; University of Malaya Research Grant (UMRG) RP014D-13AET; University of Malaya Science Fund 06/01/03/SF0831; University of Malaya FRGS FP035-2013A This research is supported by the University of Malaya-Ministry of Higher Education Grant UM.C/625/1/HIR/MOHE/ENG/29, University of Malaya Research Grant (UMRG) RP014D-13AET, the University of Malaya Science Fund (06/01/03/SF0831), and the University of Malaya FRGS (Grant no. FP035-2013A). 0 ROYAL SOC CHEMISTRY CAMBRIDGE RSC ADV
Uncontrolled Keywords: Biomedical applications, membranes, pva, alcohol, films,
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TJ Mechanical engineering and machinery
T Technology > TK Electrical engineering. Electronics Nuclear engineering
T Technology > TP Chemical technology
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 09 Mar 2016 01:48
Last Modified: 06 Oct 2017 03:47
URI: http://eprints.um.edu.my/id/eprint/15683

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year