Constant glucose biosensor based on vertically aligned carbon nanotube composites

Yousefi, A.T. and Bagheri, Samira and Kadri, Nahrizul Adib and Mahmood, M.R. and Ikeda, S. (2015) Constant glucose biosensor based on vertically aligned carbon nanotube composites. International Journal of Electrochemical Science, 10 (5). pp. 4183-4192. ISSN 1452-3981,

[img]
Preview
PDF (Constant Glucose Biosensor Based on Vertically Aligned Carbon Nanotube Composites)
Constant_Glucose_Biosensor_Based_on_Vertically_Aligned_Carbon_Nanotube_Composites.pdf - Published Version

Download (1MB)
Official URL: https://www.electrochemsci.org/papers/vol10/100504...

Abstract

In this contribution, a reagent free glucose biosensor was prepared based on multi walled carbon nanotubes (MWCNTs) composite via the electrochemical method. The synthesized MWCNTs were in turn successfully optimized by the chemical vapor deposition (CVD) method. The glucose oxidase (GOx) was immobilized on a carbon nanotubes/gelatin (Gl) composite using the entrapment technique, with an 8.42 s(-1) direct electron transfer rate between GOx and MWCNTs/Gl, which was then drop-casted onto a glassy carbon electrode (GCE). The bioactivity of GOx on modified GCE was retained during the electrochemical reactions. The cyclic voltammetric results coupled with the chronoamperometric response and obtained from modified GCE indicated that a GOx/MWCNTs/Gl/GC electrode can be utilized as a glucose biosensor via its display of high sensitivity and stability. The biosensor exhibited a wide linearity range to 8.9 mM glucose, with the detection limit of 0.54 mM and a stability of 75.4 current diminish after 25 days. The proposed fabrication method of glucose biosensor was in line with the developments of electrochemical research for glucose determination of human serum in the context of electrochemical reactions. The results indicated that the biosensor possessed good stability and acceptable fabrication reproducibility.

Item Type: Article
Funders: UNSPECIFIED
Additional Information: ISI Document Delivery No.: CI5GK Times Cited: 0 Cited Reference Count: 35 Cited References: Ahuja T, 2007, BIOMATERIALS, V28, P791, DOI 10.1016/j.biomaterials.2006.09.046 Cai CX, 2004, ANAL BIOCHEM, V332, P75, DOI 10.1016/j.ab.2004.05.057 Chekin F, 2012, J SOLID STATE ELECTR, V16, P3245, DOI 10.1007/s10008-012-1767-7 Crescenzi V, 2002, BIOMACROMOLECULES, V3, P1384, DOI 10.1021/bm025657m Cui G, 2000, ANAL CHEM, V72, P1925, DOI 10.1021/ac991213d Ghindilis AL, 1997, ELECTROANAL, V9, P661, DOI 10.1002/elan.1140090902 Guiseppi-Elie A, 2002, NANOTECHNOLOGY, V13, P559, DOI 10.1088/0957-4484/13/5/303 Guiseppi-Elie A, 2010, BIOMATERIALS, V31, P2701, DOI 10.1016/j.biomaterials.2009.12.052 Khadka DB, 2012, NANOMED-NANOTECHNOL, V8, P1242, DOI 10.1016/j.nano.2012.02.013 Kumar M, 2010, J NANOSCI NANOTECHNO, V10, P3739, DOI 10.1166/jnn.2010.2939 LAVIRON E, 1979, J ELECTROANAL CHEM, V101, P19, DOI 10.1016/S0022-0728(79)80075-3 Lin YH, 2004, NANO LETT, V4, P191, DOI 10.1021/nl0347233 Lin Y., 2005, J FRONT BIOSCI, V10, P582 Liu Y, 2005, BIOSENS BIOELECTRON, V21, P984, DOI 10.1016/j.bios.2005.03.003 Meetoo D., 2007, AM J NURS, V16, P1002 Ozdemir C, 2010, FOOD CHEM, V119, P380, DOI 10.1016/j.foodchem.2009.05.087 Pellissier M, 2008, ELECTROCHEM COMMUN, V10, P835, DOI 10.1016/j.elecom.2008.03.010 Pillai SK, 2007, J NANOSCI NANOTECHNO, V7, P3011, DOI 10.1166/jnn.2007.921 Ronkainen NJ, 2010, CHEM SOC REV, V39, P1747, DOI 10.1039/b714449k Sarma A. K., 2009, J BIOSENSORS BIOELEC, V24, P2313 Sung SL, 1999, APPL PHYS LETT, V74, P197, DOI 10.1063/1.123291 Tang H, 2004, ANAL BIOCHEM, V331, P89, DOI 10.1016/j.ab.2004.05.005 Termeh Yousefi A., 2014, J MAT RES INNOVATION TermehYousefi A., 2014, J BIOMED RES INT TermehYousefi A., 2015, J SENSOR REV, V35 Termehyousefi A., 2015, J MAT MANUF PROCESSE, V30, P59 Tu XM, 2012, MICROCHIM ACTA, V177, P159, DOI 10.1007/s00604-012-0766-9 VARGHESE SH, 2010, J CURR NANOSCI, V6, P331 Wang J, 2008, TRAC-TREND ANAL CHEM, V27, P619, DOI 10.1016/j.trac.2008.05.009 WANG SG, 2003, J ELECTROCHEM COMMUN, V5, P800 Xing XR, 2012, BIOSENS BIOELECTRON, V31, P277, DOI 10.1016/j.bios.2011.10.032 Yang W., 2007, J NANOTECHNOLOGY, V18 Yin YJ, 2005, SENSORS-BASEL, V5, P220, DOI 10.3390/s5040220 Yun J, 2012, J NANOSCI NANOTECHNO, V12, P6534, DOI 10.1166/jnn.2012.5428 Zhang D, 2004, LANGMUIR, V20, P7303, DOI 10.1021/la049667f TermehYousefi, Amin Bagheri, Samira Kadri, Nahrizul Adib Mahmood, Mohamad Rusop Ikeda, Shoichiro Kadri, Nahrizul Adib/D-4400-2009; Engineering, Faculty /I-7935-2015 Kadri, Nahrizul Adib/0000-0001-9694-4337; Engineering, Faculty /0000-0002-4848-7052 0 ESG BELGRADE INT J ELECTROCHEM SC
Uncontrolled Keywords: Chemical vapor deposition, Biosensors, Electrocatalyst, Gelatin, Multi walled carbon nanotube, Glucose oxidase, direct electron-transfer, chemical-vapor-deposition, oxidase, nanofibers, hydrogels,
Subjects: T Technology > T Technology (General)
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 02 Mar 2016 06:18
Last Modified: 20 Jan 2021 07:20
URI: http://eprints.um.edu.my/id/eprint/15650

Actions (login required)

View Item View Item