Large-scale comparison of intron positions among animal, plant, and fungal genes

Fedorov, A. and Gilbert, W. and Merican, A.F. (2002) Large-scale comparison of intron positions among animal, plant, and fungal genes. Proceedings of the National Academy of Sciences of the United States of America, 99 (25). pp. 16128-16133. ISSN 0027-8424, DOI

Full text not available from this repository.
Official URL:


We purge large databases of animal, plant, and fungal intron-containing genes to a 20% similarity level and then identify the most similar animal-plant, animal-fungal, and plant-fungal protein pairs. We identify the introns in each BLAST 2.0 alignment and score matched intron positions and slid (near-matched, within six nucleotides) intron positions automatically. Overall we find that 10% of the animal introns match plant positions, and a further 7% are "slides." Fifteen percent of fungal introns match animal positions, and 13% match plant positions. Furthermore, the number of alignments with high numbers of matches deviates greatly from the Poisson expectation. The 30 animal-plant alignments with the highest matches (for which 44% of animal introns match plant positions) when aligned with fungal genes are also highly enriched for triple matches: 39% of the fungal introns match both animal and plant positions. This is strong evidence for ancestral introns predating the animal-plant-fungal divergence, and in complete opposition to any expectations based on random insertion. In examining the slid introns, we show that at least half are caused by imperfections in the alignments, and are most likely to be actual matches at common positions. Thus, our final estimates are that approximate to14% of animal introns match plant positions, and that approximate to17-18% of fungal introns match animal or plant positions, all of these being likely to be ancestral in the eukaryotes.

Item Type: Article
Additional Information: Institute of Biological Sciences, Faculty of Science Building, University of Malaya, 50603 Kuala Lumpur, MALAYSIA
Uncontrolled Keywords: Exon, Phase distribution, Evolution, Eukaryote, Prokaryote, Proto-splice sites, Ancient introns, Isomerase gene, Origin, Pieces
Subjects: Q Science > QH Natural history > QH301 Biology
Divisions: Faculty of Science > Institute of Biological Sciences
Depositing User: Miss Malisa Diana
Date Deposited: 04 Mar 2013 01:46
Last Modified: 20 Oct 2014 01:44

Actions (login required)

View Item View Item