Enhanced photocatalytic activity of Zn-al layered double hydroxides for methyl violet and peat water photooxidation

Fatimah, Is and Yahya, Amri and Iqbal, Rendy Muhamad and Tamyiz, Muchammad and Doong, Ruey-an and Sagadevan, Suresh and Oh, Won-Chun (2022) Enhanced photocatalytic activity of Zn-al layered double hydroxides for methyl violet and peat water photooxidation. Nanomaterials, 12 (10). ISSN 2079-4991, DOI https://doi.org/10.3390/nano12101650.

Full text not available from this repository.


Zn-Al Layered Double Hydroxides (Zn-Al LDHs) and its calcined form were successfully prepared and utilized for the removal of methyl violet (MV) and treatment of peat water by photocatalytic oxidation. The research was aimed to evaluate the effect of calcination to Zn-Al LDHs for the effect on the physicochemical character and the capability as a photocatalyst. The characterization of the samples was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmet-Teller specific surface area (BET), and X-ray photoelectron spectroscopy (XPS). The results showed that the increased BET specific surface area along with the enhanced porous structure was achieved by the calcination procedure, which is associated with the enhanced interlayer space of d(003) identified by XRD analysis. Thermal conversion showed an influence to the increased band gap energy from 3.10 eV in the uncalcined Zn-Al LDHs into 3.16 eV for the calcined material. These character changes contributed to the enhanced photocatalytic activity of the Zn-AL LDHs by calcination, which was proposed and verified by experiments. It was observed that photocatalytic activity of the material for MV gave about a 45.57% removal of MV and a 68% removal for the natural organic material of the peat water.

Item Type: Article
Funders: "Project of Conversion by the Past R&D Results" through the Ministry of Trade, Industry and Energy (MOTIE) [Grant No:P0017347 2022}
Uncontrolled Keywords: Dye degradation; Layered double hydroxides; Photocatalyst; Peat water; Photooxidation
Subjects: Q Science > QC Physics
Q Science > QD Chemistry
Divisions: Deputy Vice Chancellor (Research & Innovation) Office > Nanotechnology & Catalysis Research Centre
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 11 Oct 2023 01:13
Last Modified: 11 Oct 2023 01:13
URI: http://eprints.um.edu.my/id/eprint/42227

Actions (login required)

View Item View Item