Thermo-hydraulic performance in ceramic-made microchannel heat sinks with an optimum fin geometry

Cao, Yan and Abbas, Mohamed and El-Shorbagy, M. A. and Gepreel, Khaled A. and Dahari, Mahidzal and Le, Van Vang and Badran, Mohamed Fathy and Huynh, Phat Huy and Wae-hayee, Makatar (2022) Thermo-hydraulic performance in ceramic-made microchannel heat sinks with an optimum fin geometry. Case Studies in Thermal Engineering, 36. ISSN 2214-157X, DOI

Full text not available from this repository.


Efficient heat rejection from modern microelectronic equipment plays a substantial role in increasing the functionality and longevity of these products. Microchannel heat sinks (MCHSs) are one of the liquid-cooling technologies, and it is needed to increase their heat transfer performance to acquire higher cooling capacity. In the current numerical study, two distinct strategies are suggested to ameliorate the heat transfer behavior of the MCHSs. First, straight-slot fins with different aspect ratios (b/a = 1.5, 2, 2.5, 3, 4, and 5) are added to the microchannels. The heat transfer and pressure drop properties in the finned-heat sink are analyzed numerically. After investigating straight-slot fins and selecting the optimum model, the heat sink's material is changed from alumina to Aluminum nitride (AlN) and Beryllium oxide (BeO). The impact of utilizing these two advanced ceramics on the thermo-hydraulic performance of the MCHS is examined. According to the obtained results, the MCHS with longer straight-slot fins (b/a = 5) indicated higher thermal performance values at all investigated Reynolds numbers. Changing the optimum model's material from alumina to AlN and BeO ceramics, the MCHS's thermal performance was enhanced by about 3.72 and 4.22 times (at the Reynolds number of 300), respectively.

Item Type: Article
Funders: Research Center for Advanced Materials Science (RCAMS) at King Khalid University, Saudi Arabia (Grant No: RCAMS/KKU/018-20), Taif University, Taif, Saudi Arabia (Grant No: TURSP-2020/16 & GPF054AB-2020)
Uncontrolled Keywords: Microchannel heat sink; Straight-slot fin; Advanced ceramics; Numerical simulation; Heat transfer performance increment
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Engineering > Department of Electrical Engineering
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 27 Oct 2023 03:27
Last Modified: 27 Oct 2023 03:27

Actions (login required)

View Item View Item