Transcorneal electrical stimulation enhances cognitive functions in aged and 5XFAD mouse models

Yu, Wing Shan and Aquili, Luca and Wong, Kah Hui and Lo, Amy Cheuk Yin and Chan, Leanne Lai Hang and Chan, Ying-Shing and Lim, Lee Wei (2022) Transcorneal electrical stimulation enhances cognitive functions in aged and 5XFAD mouse models. Annals of The New York Academy of Sciences, 1515 (1). pp. 249-265. ISSN 0077-8923,

Full text not available from this repository.


Dementia is a major burden on global health for which there are no effective treatments. The use of noninvasive visual stimulation to ameliorate cognitive deficits is a novel concept that may be applicable for treating dementia. In this study, we investigated the effects of transcorneal electrical stimulation (TES) on memory enhancement using two mouse models, in aged mice and in the 5XFAD model of Alzheimer's disease. After 3 weeks of TES treatment, mice were subjected to Y-maze and Morris water maze tests to assess hippocampal-dependent learning and memory. Immunostaining of the hippocampus of 5XFAD mice was also performed to examine the effects of TES on amyloid plaque pathology. The results showed that TES improved the performance of both aged and 5XFAD mice in memory tests. TES also reduced hippocampal plaque deposition in male, but not female, 5XFAD mice. Moreover, TES significantly reversed the downregulated level of postsynaptic protein 95 in the hippocampus of male 5XFAD mice, suggesting the effects of TES involve a postsynaptic mechanism. Overall, these findings support further investigation of TES as a potential treatment for cognitive dysfunction and mechanistic studies of TES effects in other dementia models.

Item Type: Article
Funders: Research Grants Council, University Grants Committee [17119420], Seed Fund for Basic Research, The University of Hong Kong [201811159133] [201910159163], Seed Fund for Translational & Applied Research, The University of Hong Kong [201910160010]
Uncontrolled Keywords: 5XFAD mouse model; Alzheimer's disease; Dementia; PSD95; Synaptic component; Transcorneal electrical stimulation (TES)
Subjects: R Medicine
Divisions: Faculty of Medicine
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 15 Sep 2023 01:51
Last Modified: 18 Sep 2023 04:53

Actions (login required)

View Item View Item