ANN modeling of thermal conductivity and viscosity of MXene-based aqueous IoNanofluid

Parashar, Naman and Aslfattahi, Navid and Yahya, Syed Mohd and Saidur, R. (2021) ANN modeling of thermal conductivity and viscosity of MXene-based aqueous IoNanofluid. International Journal of Thermophysics, 42 (2). ISSN 0195-928X, DOI

Full text not available from this repository.


Research shows that due to enhanced properties IoNanofluids have the potential of being used as heat transfer fluids (HTFs). A significant amount of experimental work has been done to determine the thermophysical and rheological properties of IoNanofluids; however, the number of intelligent models is still limited. In this work, we have experimentally determined the thermal conductivity and viscosity of MXene-doped MMIM]DMP] ionic liquid. The size of the MXene nanoflakes was determined to be less than 100 nm. The concentration was varied from 0.05 mass% to 0.2 mass%, whereas the temperature varied from 19 degrees C to 60 degrees C. The maximum thermal conductivity enhancement of 1.48 was achieved at 0.2 mass% and 30 degrees C temperature. For viscosity, the maximum relative viscosity of 1.145 was obtained at 0.2 mass% and 23 degrees C temperature. After the experimental data for thermal conductivity and viscosity were obtained, two multiple linear regression (MLR) models were developed. The MLR models' performances were found to be poor, which further called for the development of more accurate models. Then two feedforward multilayer perceptron models were developed. The Levenberg-Marquardt algorithm was used to train the models. The optimum models had 4 and 10 neurons for thermal conductivity and viscosity model, respectively. The values of statistical indices showed the models to be well-fit models. Further, relative deviations values were also accessed for training data and testing data, which further showed the models to be well fit.

Item Type: Article
Uncontrolled Keywords: Aqueous ionic liquid; 1,3-Dimethyl imidazolium dimethyl-phosphate; Levenberg-Marquardt algorithm; MXene; Thermal conductivity; Viscosity
Subjects: T Technology > TJ Mechanical engineering and machinery
Divisions: Faculty of Engineering
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 25 Feb 2022 03:26
Last Modified: 25 Feb 2022 03:26

Actions (login required)

View Item View Item