Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth

Govindasamy, Vijayendran and Abdullah, Aimi Naim and Ronald, Veronica Sainik and Musa, Sabri and Che Ab Aziz, Zeti Adura and Zain, Rosnah Binti and Totey, Satish and Bhonde, Ramesh R. and Abu Kasim, Noor Hayaty (2010) Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. Journal of Endodontics, 36 (9). pp. 1504-1515. ISSN 0099-2399, DOI

This is the latest version of this item.


Download (180kB)
Official URL:


Lately, several new stem cell sources and their effective isolation have been reported that claim to have potential for therapeutic applications. However, it is not yet clear which type of stem cell sources are most potent and best for targeted therapy. Lack of understanding of nature of these cells and their lineage-specific propensity might hinder their full potential. Therefore, understanding the gene expression profile that indicates their lineage-specific proclivity is fundamental to the development of successful cell-based therapies. Methods: We compared proliferation rate, gene expression profile, and lineage-specific propensity of stem cells derived from human deciduous (SCD) and permanent teeth (DPSCs) over 5 passages. Results: The proliferation rate of SCD was higher (cell number, 25 x 10(6) cells/mL; percent colony-forming units [CFUs], 151.67 +/- 10.5; percent cells in S/G2 phase, 12.4 +/- 1.48) than that of DPSCs (cell number, 21 x 10(6) cells/mL; percent CFUs, 133 +/- 17.62; percent cells in S/G2 phase, 10.4 +/- 1.18). It was observed that fold expression of several pluripotent markers such as OCT4, SOX2, NANOG, and REX1 were higher (>2) in SCD as compared with DPSCs. However, DPSCs showed higher expression of neuroectodermal markers PAX6, GBX2, and nestin (fold expression >100). Similarly, higher neurosphere formation and neuronal marker expression (NF, GFAP) were found in the differentiated DPSCs into neuron-like cells as compared with SCD. Conclusions: This study thus demonstrates that both SCD and DPSCs exhibit specific gene expression profile, with clear-cut inclination of DPSCs toward neuronal lineage. (J Endod 2010;36:1504-1515)

Item Type: Article
Additional Information: Associate Prof. Dr. Noor Hayaty Binti Abu Kasim Department of Conservative Dentistry, Faculty of Dentistry Building, University of Malaya, 50603 Kuala Lumpur, MALAYSIA
Uncontrolled Keywords: Deciduous Teeth; Dental Pulp Stem Cells; Inherent Propensity; Permanent Teeth; In-Vitro; Stromal Cells; Marrow; Vivo; Dentinogenesis; Pluripotency; Neurogenesis; Generation; Population; Expression; Self-Repair; Culture-Conditions; Composite Resin; Dental Pulp Stem Cell; Functionally Graded Design; Multi Layered Post; Functionally Graded Dental Post; Soft Skills; Clinical Pairing; Dental Pulp Stromal Cells; Long-Term Expansion
Subjects: R Medicine
R Medicine > R Medicine (General)
R Medicine > RK Dentistry
Divisions: Faculty of Dentistry > Dept of Conservative Dentistry
Depositing User: Associate Prof. Dr. Noor Hayaty Abu Kasim
Date Deposited: 18 Jan 2012 09:02
Last Modified: 10 Oct 2018 07:03

Available Versions of this Item

Actions (login required)

View Item View Item