Effects of single and co-immobilization on the product specificity of type I pullulanase from Anoxybacillus sp. SK3-4

Kahar, U.M. and Chan, Kok Gan and Sani, M.H. and Mohd Noh, N.I. and Goh, K.M. (2017) Effects of single and co-immobilization on the product specificity of type I pullulanase from Anoxybacillus sp. SK3-4. International Journal of Biological Macromolecules, 104 (Part A). pp. 322-332. ISSN 0141-8130, DOI https://doi.org/10.1016/j.ijbiomac.2017.06.054.

Full text not available from this repository.
Official URL: https://doi.org/10.1016/j.ijbiomac.2017.06.054


Type I pullulanase from Anoxybacillus sp. SK3-4 (PulASK) is an unusual debranching enzyme that specifically hydrolyzes starch α-1,6 linkages at long branches producing oligosaccharides (≥G8), but is nonreactive against short branches; thus, incapable of producing reducing sugars (G1–G7). We report on the effects of both single and co-immobilization of PulASK on product specificity. PulASK was purified and immobilized through covalent attachment to three epoxides (ReliZyme EP403/M, Immobead IB-150P, and Immobead IB-150A) and an amino-epoxide (ReliZyme HFA403/M) activated supports. Following immobilization, all PulASK derivatives were active on both short and long branches in starch producing reducing sugars (predominantly maltotriose) and oligosaccharides (≥G8), respectively, a feature that is absent in the free enzyme. This study also demonstrated that co-immobilization of PulASK and α-amylase from Anoxybacillus sp. SK3-4 (TASKA) on ReliZyme HFA403/M significantly changed the product specificity compared to the free enzymes alone or individually immobilized enzymes. In conclusion, individual or co-immobilization caused changes in the product specificity, presumably due to changes in the enzyme binding pocket caused by the influence of carrier surface properties (hydrophobic or hydrophilic) and the lengths of the spacer arms.

Item Type: Article
Funders: University of Malaya via High Impact Research Grants (UM.C/625/1/HIR/MOHE/CHAN/01 (Grant No. A-000001-50001) and UM.C/625/1/HIR/MOHE/CHAN/14/1 (Grant No. H-50001-A000027)) and PPP grant (PG136-2016A), Universiti Teknologi Malaysia GUP (Grant 15H50)
Uncontrolled Keywords: Anoxybacillus; Amylase; Co-immobilization; Glycoside hydrolase; Pullulanase; Starch hydrolysis
Subjects: Q Science > QH Natural history > QH301 Biology
Divisions: Faculty of Science > Institute of Biological Sciences
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 20 Jul 2017 07:45
Last Modified: 23 Dec 2019 06:21
URI: http://eprints.um.edu.my/id/eprint/17546

Actions (login required)

View Item View Item