Carpal bone segmentation using fully convolutional neural network

Liang, Kim Meng and Khalil, Azira and Nizar, Muhammad Hanif Ahmad and Nisham, Maryam Kamarun and Pingguan-Murphy, Belinda and Hum, Yan Chai and Salim, Maheza Irna Mohamad and Lai, Khin Wee (2019) Carpal bone segmentation using fully convolutional neural network. Current Medical Imaging, 15 (10). pp. 983-989. ISSN 1573-4056, DOI

Full text not available from this repository.
Official URL:


Background: Bone Age Assessment (BAA) refers to a clinical procedure that aims to identify a discrepancy between biological and chronological age of an individual by assessing the bone age growth. Currently, there are two main methods of executing BAA which are known as Greulich-Pyle and Tanner-Whitehouse techniques. Both techniques involve a manual and qualitative assessment of hand and wrist radiographs, resulting in intra and inter-operator variability accuracy and time-consuming. An automatic segmentation can be applied to the radiographs, providing the physician with more accurate delineation of the carpal bone and accurate quantitative analysis. Methods: In this study, we proposed an image feature extraction technique based on image segmentation with the fully convolutional neural network with eight stride pixel (FCN-8). A total of 290 radiographic images including both female and the male subject of age ranging from 0 to 18 were manually segmented and trained using FCN-8. Results and Conclusion: The results exhibit a high training accuracy value of 99.68% and a loss rate of 0.008619 for 50 epochs of training. The experiments compared 58 images against the gold standard ground truth images. The accuracy of our fully automated segmentation technique is 0.78 ± 0.06, 1.56 ±0.30 mm and 98.02% in terms of Dice Coefficient, Hausdorff Distance, and overall qualitative carpal recognition accuracy, respectively. © 2019 Bentham Science Publishers.

Item Type: Article
Funders: University of Malaya BKP Special Grant (BKS018-2018), Mybrain15 by Ministry of Higher Education, Malaysia
Uncontrolled Keywords: Image; segmentation; bone; assessment; extraction; convolutional neural network
Subjects: R Medicine
Divisions: Faculty of Engineering
Depositing User: Mr. Mohd Safri
Date Deposited: 17 Mar 2020 03:04
Last Modified: 17 Mar 2020 03:04

Actions (login required)

View Item View Item