Sustainable photodegradation of pharmaceuticals: KOH-impregnated palm oil mill effluent sludge biochar-BiOBr nanocomposite for wastewater treatment

Abdul-Raheem, Maryam Nike and Ahmad, Mohd Azmier and Yusop, Mohamad Firdaus Mohamad and Hassan, Oskar Hasdinor and Baidurah, Siti and Olajide, Olaoye Abdulmutolib and Adnan, Rohana and Sagadevan, Suresh and Kaus, Noor Haida Mohd (2024) Sustainable photodegradation of pharmaceuticals: KOH-impregnated palm oil mill effluent sludge biochar-BiOBr nanocomposite for wastewater treatment. Journal of Alloys and Compounds, 1007. ISSN 0925-8388, DOI https://doi.org/10.1016/j.jallcom.2024.176431.

Full text not available from this repository.

Abstract

Biochar has explored in the search of a cost-effective and environmentally friendly photocatalyst for the efficient degradation of CIP antibiotic pollutants. Biochar (BC) produced from palm oil mill sludge was used as a base to fabricate biochar-based BiOBr composites by varying the mass ratio of biochar and BiOBr via a hydrothermal route. The optimized composites BBC-1:1 has exhibited the formation of crystal struvture as tetragonal BiOBr with a a significant specific surface of 267 m(2)/g (BBC-1:1) while incorporating different mass ratios of BC with BiOBr. This composite facilitates the band gap of BiOBr from 2.87 to 2.42 eV and is consistent with the decreasing recombination rate of electron-hole pairs as suggested by UV-Vis DRS and photoluminescence (PL), respectively. Consequently, the synergistic effect of biochar BiOBr leads to a higher degradation efficiency of CIP showing the highest efficiency (97.49 %) and that of pure BiOBr being 55.66 % under optimized conditions. The degradation rate of the BBC-1:1 composite which observed to be 0.0156 min(- 1) is 3.25 times that of BiOBr (0.0048 min(- 1)). Furthermore, the scavenging experiments confirmed the significant contribution of the active radicals h+ and O-2- as the main photoactive species in the photocatalytic degradation of CIP. Consequently, the photocatalytic degradation mechanism was discussed and the reusability test confirmed the high stability of the BBC composites up to 77 % for the seventh cycles. These results show that the BBC composite is suitable for largescale practical applications as a green photocatalyst.

Item Type: Article
Funders: Universiti Sains Malaysia [Grant no. R501 - LR- RND003 - 0000000745 - 0000]
Uncontrolled Keywords: Photofunctional materials; Photocatalysis; POMES; Biochar; BiOBr; Ciprofloxacin
Subjects: Q Science > QC Physics
Q Science > QD Chemistry
T Technology > TP Chemical technology
Divisions: Deputy Vice Chancellor (Research & Innovation) Office > Nanotechnology & Catalysis Research Centre
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 24 Oct 2025 11:59
Last Modified: 24 Oct 2025 11:59
URI: http://eprints.um.edu.my/id/eprint/46473

Actions (login required)

View Item View Item