Alsufyani, Sarah M. and Jafer, Rashida and Iqbal, Javed and Alwafi, Reem and Bashir, Shahid and Ramesh, Subramaniam and Ramesh, Kasi (2024) Carbon and polymer-based conducting platforms incorporated with electroactive metal-oxides/sulphides for energy storage devices. Journal of Energy Storage, 84 (A). p. 110713. ISSN 2352-152X, DOI https://doi.org/10.1016/j.est.2024.110713.
Full text not available from this repository.Abstract
Supercapacitor has excellent potential as high-performance energy storage device because of its high energy and power densities. This review article studied some effective materials and techniques to enhance the device's performance for supercapacitor applications. These supercapacitors are made of various materials. Carbon nanomaterials, reduced graphene oxide, polypyrrole, and polyaniline are widely used in energy storage devices. The outstanding properties of these materials enable them to be used as electrode materials in supercapacitors. This paper also highlights some difficulties in designing and developing energy storage technologies. This study offers a perspective on creating flexible supercapacitors based on materials with suitable specific capacitance and capacity retention for real-world utilization. It explores several types of supercapacitors to compare with batteries and offers a numerical value for energy and power densities to observe improving electrochemical performances for practical energy storage devices. Moreover, it provides many apparatus techniques for analyzing structures, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. Besides that, it explains how the structure and morphologies of electrode material affect charge transport between electrode and electrolyte, thus enhancing electrical conductivity. Also, using doped material is an essential factor that could impact electrical conductivity. Furthermore, it explained the electrochemical performance of various electrodes by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanic chargedischarge (GCD).
Item Type: | Article |
---|---|
Funders: | UNSPECIFIED |
Uncontrolled Keywords: | Energy storage; Supercapacitor; Conducting polymer; Carbon material; Reduce graphene oxide; Carbon nanotube |
Subjects: | Q Science > Q Science (General) Q Science > QC Physics |
Divisions: | Faculty of Science > Department of Physics Deputy Vice Chancellor (Research & Innovation) Office > UM Power Energy Dedicated Advanced Centre |
Depositing User: | Ms. Juhaida Abd Rahim |
Date Deposited: | 06 Nov 2024 06:37 |
Last Modified: | 06 Nov 2024 06:37 |
URI: | http://eprints.um.edu.my/id/eprint/45623 |
Actions (login required)
View Item |