Yap, Yuenkiat and Chong, Wu Yi and Razgaleh, S. A. and Huang, Nayming and Ong, Chinkhai and Ahmad, H. (2022) Performance of Q-switched fiber laser using optically deposited reduced graphene oxide as saturable absorber. Fiber and Integrated Optics, 41 (1-2). pp. 26-40. ISSN 0146-8030, DOI https://doi.org/10.1080/01468030.2021.2018070.
Full text not available from this repository.Abstract
Graphene is one of the most attractive two-dimensional nanomaterials widely used as saturable absorber for pulsing laser, owing to its unique non-linear optical responses. However, fabrication and integration of graphene saturable absorber into a laser cavity involves complex processes and procedures. Mass production of graphene-based saturable absorbers requires simplification of the fabrication process with minimum material wastage. Reduced graphene oxide, a functionalized graphene, is found to have saturable absorption property as well. Comparatively, it is easier and more cost-effective to produce. On the other hand, optical deposition is a saturable absorber deposition technique that maximizes material utilization. In this work, commercially available reduced graphene oxide in N-methyl-2-pyrrolidone was used to fabricate a saturable absorber device via optical deposition, due to its simplicity and high efficacy. Optical pulse generation via Q-switching were successfully demonstrated with the optically deposited rGO-SA incorporated into a ring erbium-doped fiber laser. Pulse repetition rate of up to similar to 85.0 kHz and pulse durations as short as similar to 2.0 mu s were achieved. Its performance as a saturable absorber in a Q-switched fiber laser is then compared with previous works. Comparatively, optically deposited rGO has a much lower Q-switched threshold and holds huge potential for mass production with maximum material utilization.
Item Type: | Article |
---|---|
Funders: | Ministry of Education of Malaysia, under the Fundamental Research Grant Scheme (Grant No: FRGS/1/2018/STG02/HWUM/ 02/2) |
Uncontrolled Keywords: | Reduced graphene oxide; Nanomaterials; Fiber laser; Q-switched |
Subjects: | Q Science > QC Physics |
Divisions: | Faculty of Science > Department of Physics Deputy Vice Chancellor (Research & Innovation) Office > Photonics Research Centre |
Depositing User: | Ms. Juhaida Abd Rahim |
Date Deposited: | 25 Oct 2023 02:14 |
Last Modified: | 25 Oct 2023 02:14 |
URI: | http://eprints.um.edu.my/id/eprint/41769 |
Actions (login required)
View Item |