The removal of antibiotics in water by chemically modified carbonaceous adsorbents from biomass: A systematic review

Anuar, Nur Faradila and Iskandar Shah, Darween Rozehan Shah and Ramli, Fitri Fareez and Md Zaini, Mohd Saufi and Mohammadi, Nasrin Agha and Daud, Ahmad Rafizan Mohamad and Syed-Hassan, Syed Shatir A. (2023) The removal of antibiotics in water by chemically modified carbonaceous adsorbents from biomass: A systematic review. Journal of Cleaner Production, 401. ISSN 0959-6526, DOI https://doi.org/10.1016/j.jclepro.2023.136725.

Full text not available from this repository.

Abstract

Antibiotics are extensively used in treating infectious diseases for both humans and animals. However, they are generally not fully digested in the body and are released as active compounds into aquatic systems through domestic sewage treatment plants, where they can cause chronic toxicity and some potentially major health and environmental risks. Many researchers reported that conventional wastewater treatment processes cannot completely eradicate antibiotic residue and that these residues may be discharged to the receiving rivers and streams. Adsorption was claimed to be able to remove these contaminants even at low concentrations and under a variety of pH conditions. Biomass-based adsorbent materials have recently been used to remove antibiotics due to their wide availability, eco-friendly nature, good surface characteristics, and low cost. This study conducted a systematic review of biomass-based carbon adsorbents used for antibiotic removal. The surface chemistry and maximum antibiotic adsorption capacities were reviewed and discussed based on the type of biomass and chemical modification. The effect of influential variables such as pH, initial concentration of antibiotics and adsorbent dosage was also discussed in detail. After the screening process, four articles were found to be suitable for the detail analysis on reusable efficiency. Results of the detail analysis shows coconut shell and sawdust based-carbon adsorbent could remove antibiotics with 89% reusable efficiency after the fourth cycle of reuse. Overall, this systematic review ascribes the research work for synthesizing an excellent performance of biomass -based carbon adsorbent.

Item Type: Article
Funders: Universiti Teknologi MARA, 600-RMC/GPK 5/3 (041/2020
Uncontrolled Keywords: Antibiotics adsorption; Activated carbon; Biomass; Surface modification; Chemical activation
Subjects: T Technology > TP Chemical technology
Divisions: Faculty of Medicine > Social & Preventive Medicine
Depositing User: Ms Zaharah Ramly
Date Deposited: 27 Nov 2023 02:52
Last Modified: 27 Nov 2023 02:52
URI: http://eprints.um.edu.my/id/eprint/38441

Actions (login required)

View Item View Item