Remarkable conductivity enhancement in P-doped polythiophenes via rational engineering of polymer-dopant interactions

Kim, Jongho and Guo, Jing and Sini, Gjergji and Sorensen, Michael Korning and Andreasen, Jens Wenzel and Woon, Kai Lin and Coropceanu, Veaceslav and Paleti, Sri Harish Kumar and Wei, Huan and Peralta, Sebastien and Mallouki, Mohamed and Muller, Christian and Hu, Yuanyuan and Bui, Thanh-Tuan and Wang, Suhao (2023) Remarkable conductivity enhancement in P-doped polythiophenes via rational engineering of polymer-dopant interactions. MATERIALS TODAY ADVANCES, 18. ISSN 2590-0498, DOI https://doi.org/10.1016/j.mtadv.2023.100360.

Full text not available from this repository.

Abstract

Molecular doping is an effective approach to tune the charge density and optimize electrical performance of conjugated polymers. However, the introduction of dopants, on the other hand, may disturb the polymer microstructure and disrupt the charge transport path, often leading to a decrease of charge carrier mobility and deterioration of electrical conductivity of the doped films. Here we show that dopant-induced disorder can be overcome by rational engineering of polymer-dopant interactions, resulting in remarkable enhancement of electrical conductivity. Benchmark poly(3-hexylthiophene) (P3HT) and its analogous random polymers of 3-hexylthiophene and thiophene P(3HT)1-x-stat-(T)x] were synthesized and doped by 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). Remarkably, random P(3HT)1-x-stat-(T)x] was doped to a far superior electrical conductivity, that in the case of x >= 0.24, the conductivity of P(3HT)1-x-stat-(T)x] is over 100 times higher than that of the doped P3HT, despite both P3HT and P(3HT)1-x-stat-(T)x] exhibit comparable charge carrier mobility in their pristine state and in spite of their practically identical redox properties. This result can be traced back to the formation of is-stacked polymer-dopant-polymer co-crystals exhibiting extremely short packing distances of 3.13-3.15 angstrom. The mechanism behind these performances is based on a new role played by the dopant molecules that we name ``bridging-gluing''. The results are coherently verified by the com-bination of optical absorption spectroscopy, X-ray diffraction, density functional theory calculations, and molecular dynamics simulations.(c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Item Type: Article
Funders: UNSPECIFIED
Uncontrolled Keywords: Conducting polymers; Charge-transport; Doping; Aggregations; DFT calculations
Subjects: Q Science > QC Physics
Divisions: Faculty of Science > Department of Physics
Depositing User: Ms Zaharah Ramly
Date Deposited: 16 May 2024 23:48
Last Modified: 16 May 2024 23:48
URI: http://eprints.um.edu.my/id/eprint/38438

Actions (login required)

View Item View Item