Su'ait, Mohd Sukor and Sahudin, Muhammad Ameerullah and Ludin, Norasikin Ahmad and Ahmad, Azizan and Rahman, Mohd Yusri Abdul and Ahmoum, Hassan and Ataollahi, Narges and Scardi, Paolo (2023) Potential of transition metal sulfides, Cu2ZnSnS4 as inorganic absorbing layers in dye-sensitized solar cells. Journal of Cleaner Production, 394. ISSN 0959-6526, DOI https://doi.org/10.1016/j.jclepro.2023.136327.
Full text not available from this repository.Abstract
Organic dye sets a benchmark for dye-sensitized solar cells (DSSCs) application. Replacing the organic dyes with inorganic phases poses a significant challenge. Without organic dyes, efficiency decreases dramatically due to loss of charge transfer. Thus, surface modification techniques are widely considered to be the key to reducing the electron recombination, suppressing the dark currents and increasing efficiency of DSSC. Using multiple absorbent materials with different energy gaps/band gap values could broaden the DSSC's photon absorption range. This study investigated the potential applications of transition metal sulfides (TMS), kesterite (Cu2ZnSnS4, CZTS) as a promising inorganic absorber layer of DSSCs. Based on the current-voltage measurement, a lower molar ratio of milled CZTS compared to the N719-dye produced a stable DSSC with a power conversion efficiency (eta), short-circuit current density (J(sc)), and open-circuit voltage (V-oc) of 4.75%, 13.99 mA cm(-2), and 0.75 V, respectively. Furthermore, incident photon-to-current efficiency (IPCE) analysis exhibited an improved number of incident photons harvested by standard DSSC from 60% to 85% with and without the presence of CZTS. Even when light harvesting reached up to 80%, a higher concentration of CZTS content compared to the N719 dye produced an unstable solar cell device with a low J(sc) and eta due to electron loss through the recombination process. This was confirmed by the recombination resistance (R-rec) determined by the impedance spectroscopy (EIS), which found that the suppression of the Rrec at a lower ratio concentration between CZTS/N719-dye generated the highest eta The results that the use of the closest concentration of inorganic and organic cosensitizers can improve the stability and overall performance of the developed DSSC. This approach has been regarded as the most sustainable economically viable means of producing cheap solar cells to convert the largest amount of energy from the solar spectrum to electricity.
Item Type: | Article |
---|---|
Funders: | Department of Civil, Environmental and Mechanical Engineering, University of Trento, Universiti Malaya, Universiti Kebangsaan Malaysia [Grant No: UKM-DIP-2018-008] |
Uncontrolled Keywords: | Cu2ZnSnS4 Dye-sensitized solar cell; Energy conversion; Semiconductor-electrolyte junction; Transition metal sulfides |
Subjects: | T Technology > TJ Mechanical engineering and machinery |
Divisions: | Faculty of Science > Department of Chemistry |
Depositing User: | Ms Zaharah Ramly |
Date Deposited: | 10 Nov 2024 03:40 |
Last Modified: | 10 Nov 2024 03:40 |
URI: | http://eprints.um.edu.my/id/eprint/38405 |
Actions (login required)
View Item |