Deep-freezing temperatures during irradiation preserves the compressive strength of human cortical bone allografts: A cadaver study

Harmony, Tan Chern Yang and Yusof, Norimah and Ramalingam, Saravana and Baharin, Ruzalina and Syahrom, Ardiyansyah and Mansor, Azura (2022) Deep-freezing temperatures during irradiation preserves the compressive strength of human cortical bone allografts: A cadaver study. Clinical Orthopaedics and Related Research, 480 (2). pp. 407-418. ISSN 0009-921X, DOI https://doi.org/10.1097/CORR.0000000000001968.

Full text not available from this repository.

Abstract

Background Gamma irradiation, which minimizes the risk of infectious disease transmission when human bone allograft is used, has been found to negatively affect its biomechanical properties. However, in those studies, the deep-freezing temperature during irradiation was not necessarily maintained during transportation and sterilization, which may have affected the findings. Prior reports have also suggested that controlled deep freezing may mitigate the detrimental effects of irradiation on the mechanical properties of bone allograft. Question/purpose Does a controlled deep-freezing temperature during irradiation help preserve the compressive mechanical properties of human femoral cortical bone allografts? Methods Cortical bone cube samples, each measuring 64 mm(3), were cut from the mid-diaphyseal midshaft of five fresh-frozen cadaver femurs (four male donors, mean range] age at procurement 42 years 42 to 43]) and were allocated via block randomization into one of three experimental groups (with equal numbers of samples from each donor allocated into each group). Each experimental group consisted of 20 bone cube samples. Samples irradiated in dry ice were subjected to irradiation doses ranging from 26.7 kGy to 27.1 kGy (mean 26.9 kGy) at a deep-freezing temperature below -40 degrees C (the recommended long-term storage temperature for allografts). Samples irradiated in gel ice underwent irradiation doses ranging from 26.2 kGy and 26.4 kGy (mean 26.3 kGy) in a freezing temperature range between -40 degrees C and 0 degrees C. Acting as controls, samples in a third group were not subjected to gamma irradiation. The mechanical properties (0.2% offset yield stress, ultimate compression stress, toughness, and the Young modulus) of samples from each group were subsequently evaluated via axial compression loading to failure along the long axis of the bone. The investigators were blinded to sample group during compression testing. Results The mean ultimate compression stress (84 +/- 27 MPa versus 119 +/- 31 MPa, mean difference 35 95% CI 9 to 60]; p = 0.005) and toughness (3622 +/- 1720 kJ/m(3) versus 5854 +/- 2900 kJ/m(3), mean difference 2232 95% CI 70 to 4394]; p = 0.009) of samples irradiated at a higher temperature range (-40 degrees C to 0 degrees C) were lower than in those irradiated at deep-freezing temperatures (below -40 degrees C). The mean 0.2% offset yield stress (73 +/- 28 MPa versus 109 +/- 38 MPa, mean difference 36 95% CI 11 to 60]; p = 0.002) and ultimate compression stress (84 +/- 27 MPa versus 128 +/- 40 MPa, mean difference 44 95% CI 17 to 69]; p < 0.001) of samples irradiated at a higher temperature range (-40 degrees C to 0 degrees C) were lower than the nonirradiated control group samples. The mean 0.2% offset yield stress (73 +/- 28 MPa versus 101 +/- 28 MPa, mean difference 28 95% CI 3 to 52]; p = 0.02; effect size = 1.0 95% CI 0.8 to 1.2]) of samples irradiated at higher temperature range (-40 degrees C to 0 degrees C) were no different with the numbers available to those irradiated at deep-freezing temperature. The mean toughness (3622 +/- 1720 kJ/m(3) versus 6231 +/- 3410 kJ/m(3), mean difference 2609 95% CI 447 to 4771]; p = 0.02; effect size = 1.0 95% CI 0.8 to 1.2]) of samples irradiated at higher temperature range (-40 degrees C to 0 degrees C) were no different with the numbers available to the non-irradiated control group samples. The mean 0. 2% offset yield stress, ultimate compression stress, and toughness of samples irradiated in deep-freezing temperatures (below -40 degrees C) were not different with the numbers available to the non-irradiated control group samples. The Young modulus was not different with the numbers available among the three groups. Conclusion In this study, maintenance of a deep-freezing temperature below -40 degrees C, using dry ice as a cooling agent, consistently mitigated the adverse effects of irradiation on the monotonic-compression mechanical properties of human cortical bone tissue. Preserving the mechanical properties of a cortical allograft, when irradiated in a deep-freezing temperature, may have resulted from attenuation of the deleterious, indirect effects of gamma radiation on its collagen architecture in a frozen state. Immobilization of water molecules in this state prevents radiolysis and the subsequent generation of free radicals. This hypothesis was supported by an apparent loss of the protective effect when a range of higher freezing temperatures was used during irradiation.

Item Type: Article
Funders: Universiti Malaya [Grant No: PO018-2016A]
Uncontrolled Keywords: Deep-freezing temperatures; Human cortical bone allografts; Biomechanical properties; Irradiation
Subjects: R Medicine > RD Surgery
Divisions: Faculty of Medicine
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 09 Aug 2022 07:29
Last Modified: 09 Aug 2022 07:29
URI: http://eprints.um.edu.my/id/eprint/33408

Actions (login required)

View Item View Item