The effect of vehicle and road conditions on rollover of commercial heavy vehicles during cornering: A simulation approach

Ikhsan, Nurzaki and Saifizul, Ahmad and Ramli, Rahizar (2021) The effect of vehicle and road conditions on rollover of commercial heavy vehicles during cornering: A simulation approach. Sustainability, 13 (11). ISSN 2071-1050, DOI https://doi.org/10.3390/su13116337.

Full text not available from this repository.

Abstract

Heavy vehicles make up a relatively small percentage of traffic volume on Malaysian roads compared to other vehicle types. However, heavy vehicles have been reported to be involved in 30,000-40,000 accidents yearly and caused significantly more fatalities. Rollover accidents may also incur cargo damages and cause environmental or human disasters for vehicles that carry hazardous cargos if these contents are spilled. Thus, in this paper, a comprehensive study was conducted to investigate the effects of vehicle and road conditions on rollover of commercial heavy vehicles during cornering at curved road sections. Vehicle conditions include the heavy vehicle class (based on the axle number and vehicle type), speed and gross vehicle weight, while road conditions include the cornering radius and coefficient of friction values. In order to reduce the risks involved in usage of actual heavy vehicles in crash experiments, a simulation approach using a multi-body vehicle dynamic software was applied in this study, where the verified virtual heavy vehicle model was simulated and the output results were extracted and analyzed. The results showed that a maximum of 40% and a minimum of 23% from the total number of simulations resulted in an unsafe condition (indicated as failed) during the simulations. From the unsafe conditions, two types of rollover accidents could be identified, which were un-tripped and tripped rollovers. The heavy vehicle speed was also found to have a strong correlation to the lateral acceleration (to cause a rollover), followed by gross vehicle weight, coefficient of friction and cornering radius, respectively.

Item Type: Article
Funders: Sciencefund Grant [03-01-03-SF0772], PPP (Peruntukan Penyelidikan Pascasiswazah) Grant [PG093-2013B]
Uncontrolled Keywords: Rollover; Heavy vehicle; Single unit truck; Single truck-trailer; Lateral acceleration
Subjects: T Technology > TD Environmental technology. Sanitary engineering
T Technology > TE Highway engineering. Roads and pavements
Divisions: Faculty of Engineering
Depositing User: Ms Zaharah Ramly
Date Deposited: 08 Apr 2022 03:34
Last Modified: 12 Apr 2022 06:57
URI: http://eprints.um.edu.my/id/eprint/27206

Actions (login required)

View Item View Item