Design of graphene metasurface based sensitive infrared biosensor

Patel, Shobhit K. and Parmar, Juveriya and Kosta, Yogeshwar P. and Ladumor, Mayurkumar and Zakaria, Rozalina and Nguyen, Truong Khang and Dhasarathan, Vigneswaran (2020) Design of graphene metasurface based sensitive infrared biosensor. Sensors and Actuators A: Physical, 301. p. 111767. ISSN 0924-4247, DOI https://doi.org/10.1016/j.sna.2019.111767.

Full text not available from this repository.
Official URL: https://doi.org/10.1016/j.sna.2019.111767

Abstract

The article investigates graphene metasurface based infrared biosensor. Graphene metasurface perturbations are added in the Si3N4 waveguide to create leaky wave structure. Biomolecules in blood plasma form are placed over the Si3N4 waveguide to observe the sensing characteristics. Numerical results of absorption, reflectance, electric field and sensitivity are presented in this paper. The sensitivity is calculated from the shift in the absorption peak of biosensor. The sensitivity of the proposed biosensor is also compared with the previously published biosensor designs. In addition, the design results in the form of absorption and reflectance is observed for the different physical parameters like waveguide height (S), biomolecules/air layer height(B), SiO2 layer height(C) and graphene perturbations period(G). The corresponding electric field response is also presented for the proposed design at different frequencies to show the leakage of light in the biomolecules layer. © 2019 Elsevier B.V.

Item Type: Article
Funders: AISTDF Grant (No. IMRC/AISTDF/CRD/2018/000012)
Uncontrolled Keywords: Biosensor; Graphene; Infrared; Metasurface; Sensitive
Subjects: Q Science > QC Physics
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Deputy Vice Chancellor (Research & Innovation) Office > Photonics Research Centre
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 19 Aug 2020 00:37
Last Modified: 19 Aug 2020 00:37
URI: http://eprints.um.edu.my/id/eprint/25411

Actions (login required)

View Item View Item