Ahmad, Naqhiyah and Sereshti, Hassan and Mousazadeh, Milad and Rashidi Nodeh, Hamid and Kamboh, Muhammad Afzal and Mohamad, Sharifah (2019) New magnetic silica-based hybrid organic-inorganic nanocomposite for the removal of lead(II) and nickel(II) ions from aqueous solutions. Materials Chemistry and Physics, 226. pp. 73-81. ISSN 0254-0584, DOI https://doi.org/10.1016/j.matchemphys.2019.01.002.
Full text not available from this repository.Abstract
A novel magnetic sol-gel silica-based hybrid organic-inorganic adsorbent (MNPs@SiO 2 -TSD-TEOS) was synthesized by immobilizing silica (SiO 2 ) shell on Fe 3 O 4 magnetic nanoparticles (MNPs) prior to binding with hybrid organic-inorganic tetraethylorthosilicate (TEOS) and N-[3-(trimethoxysilyl)propyl]ethylenediamine (TSD)). The proposed material was characterized using Fourier transform infrared spectrometer (FTIR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscope (EDS) and X-ray diffraction (XRD). MNPs@SiO 2 -TSD-TEOS was applied as an adsorbent for the simultaneous adsorption of Pb(II) and Ni(II) ions from aqueous solutions. The adsorption process, reusability test and field application of MNPs@SiO 2 -TSD-TEOS were performed using batch adsorption of metal ions at pH 5. The adsorption process was well-matched to type III isotherm model (multilayer sorption) set by IUPAC. The experimental adsorption data were well-fitted to the Freundlich adsorption isotherm since its coefficient of determination (R 2 = 0.997) is higher than that of the Langmuir isotherm (R 2 = 0.871). The adsorption kinetics were fitted well to pseudo-2 nd -order model as compared to pseudo-1 st -order. Furthermore, the results showed maximum adsorption capacities of 417 and 357 mg g −1 for Pb(II) and Ni(II), respectively. Isotherm model (type III), Freundlich isotherm and pseudo-2 nd -order model confirm a multilayer chemical/physical adsorption process. © 2019 Elsevier B.V.
Item Type: | Article |
---|---|
Funders: | University Malaya Faculty Research Grant ( GPF049B-2018 ) and PPP Grant ( PG049-2015B ) |
Uncontrolled Keywords: | Magnetic nanoparticles; Sol-gel; Hybrid organic-inorganic material; Lead(II) and nickel(II) removal; Adsorption isotherm; Kinetics study |
Subjects: | Q Science > Q Science (General) Q Science > QD Chemistry |
Divisions: | Faculty of Science > Department of Chemistry |
Depositing User: | Ms. Juhaida Abd Rahim |
Date Deposited: | 20 May 2020 01:52 |
Last Modified: | 20 May 2020 01:52 |
URI: | http://eprints.um.edu.my/id/eprint/24357 |
Actions (login required)
View Item |