Facile synthesis of nanosized graphene/Nafion hybrid materials and their application in electrochemical sensing of nitric oxide

Yusoff, N. and Pandikumar, A. and Marlinda, A.R. and Huang, N.M. and Lim, H.N. (2015) Facile synthesis of nanosized graphene/Nafion hybrid materials and their application in electrochemical sensing of nitric oxide. Analytical Methods, 7 (8). pp. 3537-3544. ISSN 1759-9660, DOI https://doi.org/10.1039/c5ay00604j.

Full text not available from this repository.
Official URL: http://dx.doi.org/10.1039/c5ay00604j

Abstract

This paper presents the preparation of nanosized graphene hybridized with Nafion using a simple two step, sonication and hydrothermal process which successfully produced a new nanosized graphene-Nafion hybrid (G-Nf) with lateral dimensions as small as 18 nm based on AFM results. The novel G-Nf hybrids were used to modify the glassy carbon electrode (GCE) for the fabrication of nitric oxide (NO) electrochemical sensors where the optimum sensing response was achieved with a G-Nf hybrid synthesized after 16 h of hydrothermal treatment. Under the optimized experimental conditions, the GC/G-Nf (16 h) electrode showed an oxidation peak at 0.85 V in the presence of NO. It also demonstrated an excellent performance toward the detection of NO, with a limit of detection of 11.61 μM (S/N = 3) in a linear range of 0.05-0.45 mM. Moreover, this GC/G-Nf (16 h) electrode exhibited a higher sensitivity of approximately 62 μA mM-1 and had a great selectivity toward NO in the presence of interferents such as dopamine and ascorbic acid. The combination of nanosized graphene and Nafion generates a synergic effect which facilitates excellent electron-transfer processes between the electrolyte and the GCE thus improving the sensing performance of the fabricated modified electrode.

Item Type: Article
Funders: UNSPECIFIED
Uncontrolled Keywords: Ascorbic acid; Electrochemical electrodes; Electrochemical sensors; Electrodes; Glass membrane electrodes; Glassy carbon; Graphene; Nitric oxide
Subjects: Q Science > Q Science (General)
Q Science > QC Physics
Q Science > QD Chemistry
Divisions: Faculty of Science > Department of Physics
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 20 Sep 2018 05:03
Last Modified: 20 Sep 2018 05:06
URI: http://eprints.um.edu.my/id/eprint/19323

Actions (login required)

View Item View Item